
A Policy Enforcement Framework for Internet of
Things Applications in the Smart Health

S. Sicaria, A. Rizzardia, L.A. Griecob,∗, G. Pirob, A. Coen-Porisinia

a“DISTA, Dep. of Theoretical and Applied Science”, Universita’ degli Studi dell’Insubria
v. Mazzini 5 – 21100, Varese, Italy.

b“DEI, Dep. of Electrical and Information Engineering”, Politecnico di Bari
v. Orabona 4 – 70125, Bari, Italy.

Abstract

Internet of Things (IoT) is characterized by heterogeneous technologies, which

concur to the provisioning of innovative services in different application domains.

Introducing efficient mechanisms for collecting, processing, and delivering data

generated by sensors, medical equipment, wearable devices, and humans, is a

key enabling factor for advanced healthcare services. The adoption of IoT in

smart health, however, opens the doors to some security concerns. In fact,

by considering the confidentiality and sensitivity of medical data, a healthcare

system must fulfill advanced access control procedures with strict security and

data quality requirements. To this end, a flexible policy enforcement frame-

work, based on the IoT paradigm, is defined hereby. It is able to face security

and quality threats in dynamic large scale and heterogeneous smart hearth en-

vironments. As a key feature of the proposed framework, cross-domain policies

have been defined using a specification language based on XML. In this way, it

becomes possible to ease the management of interactions across different realms

and policy conflicts. Moreover, to demonstrate the usefulness of the proposed

approach, a running example, based on a smart health application, is detailed

throughout the manuscript. This helps to highlight the different facets of the

∗Corresponding author: a.grieco@poliba.it
Email addresses: sabrina.sicari@uninsubria.it (S. Sicari),

a.rizzardi@uninsubria.it (A. Rizzardi), a.grieco@poliba.it (L.A. Grieco),
giuseppe.piro@poliba.it (G. Piro), alberto.coenporisini@uninsubria.it (A.
Coen-Porisini)

Preprint submitted to Smart Health journal by Elsevier June 20, 2017

conceived enforcement framework. A preliminary performance analysis also

demonstrates its feasibility in large scale environments.

Keywords: Internet of Things, Smart Health, Security, Policy Enforcement

1. Introduction

During the last decade, Internet of Things (IoT) approached our lives, thanks

to the availability of wireless communication systems (e.g., RFID, WiFi, 4G,

IEEE 802.15.x), which have been increasingly employed as central technology

for smart monitoring and control applications [1]-[3]. Nowadays, the concept5

of IoT is many-folded. Since it embraces many different technologies, services,

and standards, it is widely perceived as the corner stone of the ICT market in

the next ten years [4]-[6]. From a logical point of view, an IoT system can be

depicted as a collection of smart devices that interact on a collaborative basis

to fulfill a common goal. Whereas, from a technological point of view, IoT10

deployments may adopt different processing and communication architectures,

technologies, and design methodologies, based on their target.

With reference to the smart health context, IoT can be successfully used

in monitoring services and biomedical systems including patient monitoring,

telemedicine, pervasive healthcare management, detection of clinical issues, man-15

agement of logistics and maintenance services, and so on [7]-[10]. In such smart

health environments, data sources, communication technologies, services’ and

users’ requirements are inherently heterogeneous [10][11]. The high level of

heterogeneity can be leveraged by multiple security attacks. But traditional se-

curity countermeasures and privacy solutions cannot be directly applied to IoT20

technologies for various reasons: their computational, memory, communication,

and energy consumption requirements could not be supported by constrained

devices [12]. Moreover, adaptation and self-healing play a key role in IoT infras-

tructures (including those related to smart health scenarios), which must be able

to face normal and unexpected changes of the target environment. Accordingly,25

privacy and security issues should be treated with a high degree of flexibility

2

[13]- [15]. Together with conventional security solutions, there is also the need

to provide built-in security in the devices themselves (i.e., embedded) in order to

pursue dynamic prevention, detection, diagnosis, isolation and countermeasures

against successful breaches [16].30

As a consequence, as a first step towards the development of a comprehen-

sive IoT-based architecture, it is mandatory to define valid security and privacy

frameworks suitable for IoT applications [2],[17]-[23]. They should address: (i)

the guarantee of confidentiality and integrity of data; (ii) the provision of au-

thentication and authorization mechanisms in order to prevent unauthorized35

users (i.e., a nurser cannot access to sensitive data available for doctors only)

from accessing the system; (iii) the assurance of anonymity of users personal in-

formation, since devices may manage sensitive information (e.g., patient details)

[24].

Besides security, healthcare services should provide accurate and complete40

information. In many scenarios, in fact, errors or missing values might have

critical impact on actions or decisions. Accordingly, an IoT-based smart health

system needs to guarantee well-defined levels of data quality. Four data qual-

ity dimensions can be considered (i.e., accuracy, timeliness, completeness, and

source reputation), in order to inform users of the reliability of the accessed45

information. This is an innovative aspect since, as pointed out in [25], current

available services provide the same information to each requesting user, often

without considering his/her requirements and without specifying the level of

security and data quality of the provided data.

Last but not least, it is important to remember that in the smart health50

context, the number of violation attempts can be significant. Therefore, it is

fundamental to define and develop proper enforcement mechanisms.

In literature, several works begin to address some of the issues described

above. But, as emerges in [26][27], few efforts are currently made regarding the

enforcement of security and data quality policies. Except for the work presented55

in [28] and [29], there are no specific solutions addressing policy enforcement

in IoT applications. To the best of the authors knowledge, no specific en-

3

forcement solutions for IoT-based smart health systems are currently available.

Some attempts have already been done to define the proper languages for the

specification of policies (for instance, the contribution presented in [30]-[32]. A60

solution which addresses the definition of flexible and standardized access con-

trol mechanisms for protecting both quality and security of sensitive data across

multiple, heterogeneous domains is still missing.

Based on these premises, this paper proposes a policy enforcement system

for IoT that adopts a cross-domain policy specification language, able to man-65

age the interactions among the involved entities under well-defined policies. To

this end, XML syntax is used, due to its general-purpose and a highly customiz-

able nature. The defined solution has to guarantee security and data quality

in case of policy violation attempts, thus dealing with the large number of crit-

ical situations which typically characterize IoT deployments. To demonstrate70

the usefulness of the proposed approach, a running example, based on a smart

health application, is detailed throughout the manuscript. This highlights that

the adoption of enforcement mechanisms provides a flexible and effective ac-

cess control to IoT resources. In addition, a preliminary performance analysis

demonstrates that the conceived approach requires less than 150 Mbps of ag-75

gregate bandwidth, thus becoming feasible in large scale environments.

As a final comment, it is expected that the enforcement framework proposed

hereby could be used in the future as a secure wrapper for managing policies

in existing IoT architectures, such as OneM2M1, OpenIoT2, FIWARE3, and

MOBIUS4, already adopted by many companies.80

The paper is organized as follows. Section 2 analyzes the state of the art

about the existing policy enforcement mechanisms. Section 3 provides a big pic-

ture of the conceived IoT Policy Enforcement Framework. Section 4 describes

the conceptual model used for the definition of the involved entities and their

1http://www.onem2m.org
2http://www.openiot.eu
3https://www.fiware.org
4http://iotmobius.com

4

relationships within the IoT scenario. Sections 5 presents the reference sce-85

nario along with a running example based on a smart health application, and

deeply discusses the policy enforcement framework, the policy language spec-

ification, and the adopted access control model. Section 6 analyzes storage,

software/hardware, and bandwidth requirements characterizing the conceived

IoT Policy Enforcement Framework. Finally, Section 7 ends the paper and90

provides some hints for future works.

2. Related Works

As mentioned in the introduction, IoT is revolutionizing the overall medical

system by introducing novel instruments and methodologies for deploying inno-

vative and healthcare services [7]-[11],[33]. As a result, the adoption of a large95

number of devices generating heterogeneous and sensitive data is transforming

conventional healthcare applications. This has resulted in complex big data

systems with serious security concerns, including secure storage, secure access,

and secure retrieval [20].

2.1. Baseline access control schemes100

Secure access to sensitive data is paramount for smart health. At the time

of this writing, many solutions have been designed by leveraging or extend-

ing conventional Role-Based Access Control (RBAC) or Attribute-based Access

Control (ABAC) schemes. When RBAC and ABAC are used, secure access

to a given data turns around an access policy. The access policy defines the105

set of properties that a user must have to earn access to the data itself. More

specifically, with RBAC, this property simply refers to the role covered by the

data consumer within a smart health system (i.e., director of cardiology depart-

ment). ABAC, instead, enables fine-grained access control. First of all, any

data consumer may be in possession of a specific set of attributes (i.e., age, role,110

responsibilities, and so on). Then, an access policy encodes a combination of

attributes required to earn data access, which could be dynamically adapted

5

according to users or providers preferences. The design of a security framework

for smart health and based on RBAC is investigated in [20] and [21]. Solutions

leveraging the ABAC logic are discussed in [22][23]. However, note that all of115

these proposals present a serious weakness: they still appear as customized so-

lutions that cannot be directly applied to large scale and dynamic healthcare

systems. This is one of the aspects that this work aims to overcome.

2.2. Policy enforcement frameworks

In general, flexible and standardized access control mechanisms could ease120

the protection of both quality and security of sensitive data across multiple

and heterogeneous domains (one of the goals of the present contribution). The

policy enforcement represents a key enabling factor in this direction. It refers

to the mechanisms used to force the application of a set of defined actions

in a system. More in detail, policies are operating rules which need to be125

enforced for the purpose of maintaining order, security, and consistency on data.

Policy enforcement assures that the security tasks can only be fulfilled if they

are in accordance with the underlying policies, consulting the policy decision

component (see Section 3) allows an entity to access a system resource or not.

With reference to IoT scenarios, literature presents neither viable solutions nor130

detailed analysis on this issue. Only some works describe how to manage policy

enforcement. At the same time, only few contributions explicitly consider the

smart health domain.

The definition of access policies through standardized languages is the first

step forwards to solve these issues. The work presented in [30], for instance,135

proposes a security framework for modern healthcare services that combines

eXtensible Access Control Markup Language (XACML), XML security, and

an extension of the baseline RBAC scheme, namely Spatial Role-Based Access

Control (SRBAC), to support a standardized, secure, and fine-grained access

control. First, the XACML language is used to define access control policies140

for confidential and sensitive data related to patients. XML security is used for

binding, in single document, the protected data and the related access policy.

6

Finally, the SRBAC approach is used by the data consumer (the doctor, for in-

stance) to retrieve the cryptographic key useful to extract the requested content

from the aforementioned XACML document. Such an approach is quite simple145

and does not consider the possibility to dynamically handle a heterogeneous

scenario with a huge number of data producers and consumers as we aim to do

in this work. Moreover, due to the fact that it uses a basic RBAC mechanism,

it does not permit customization of the offered services in terms of security

and data quality, as we do. The same issue arises in [31], which investigates150

access control mechanisms for cloud-based health information systems, in com-

pliance with the Health Insurance Portability and Accountability Act (HIPAA)

regulation.

Because it is difficult to enforce a policy across domain boundaries, it is de-

sirable to know which policies can be supported by other domains, which are155

partially supported, and which are not supported. For example, in a healthcare

environment, the cooperation and communication among pharmacy, hospital

and medical school are essential. They have their own policy enforcement mech-

anisms to protect their own proprietary data and patients records. The prob-

lem is that there are lots of collaborations and communications among these160

domains. Therefore a cross-domain policy enforcement becomes an essential

component. The same problem also exists in social networking environments.

To cope with such issues, [32] includes, in a proper simulation environment,

a semantic model mapping and translation mechanism for policy enforcement

across domain boundaries by means of Web Ontology Language (OWL). When165

compared with our solution, the work discussed in [32] presents two main dis-

advantages. First, the aim of our work is to propose a unifying language to

be adopted in IoT applications, able to interoperate with different data sources

and technologies. At the same time, we act as a cross-domain middleware, with-

out the need of a translation system, as the one proposed in [32] could lead to170

scalability issues. Second, the translated/mapped languages (e.g., WS-Policy,

XACML), besides being supported by most Web service platforms, are complex

and, with their central rule processing engine, may be a bottleneck for a poten-

7

tially large amount of authorization requests. Note that XACML also requires

a cache system for improving its efficiency, while in this paper we carry out an175

enforcement framework based on a distributed IoT architecture.

Expressing security policies to govern distributed systems (such as IoT) is

a complex and error-prone task. Because of their complexity and of the differ-

ent degrees of trust among locations in which code is deployed and executed,

it is challenging to make these systems secure. Moreover, policies are hard to180

understand, often expressed with unfriendly syntax, making it difficult for se-

curity administrators and business analysts to create intelligible specifications.

In [34] a Hierarchical Policy Language for Distributed Systems (HiPoLDS) is

introduced. HiPoLDS has been designed to enable the specification of policies in

distributed systems in a concise, readable and extensible way. HiPoLDS design185

focuses on decentralized execution environments under the control of multiple

stakeholders. It represents policy enforcement through the use of distributed

reference monitors, which control the flow of information among services (i.e.,

SOAs) and have the duty to put into action the directives output by the deci-

sion engines. But, it gives only the main implementation directions, conceived190

for service-oriented architectures, not reasoning about the scalability and the

robustness towards malicious attacks of the proposed solution.

[35], [36] and [37] enforce only access control policies by means of a proper

framework named Policy Machine (PM) and of a semantic web framework, re-

spectively. But they do not refer to a distributed nature of the proposed solu-195

tions, which is a pivotal requirement in IoT applications.

Finally, the enforcement solution presented in [28] is based on a model-

based security toolkit, named SecKit, which is integrated with the MQTT pro-

tocol layer - a widely adopted technology to enable lightweight communications

among constrained IoT devices. In this work, authorizations and obligations are200

identified and a specific module acts as a connector to intercept the messages

exchanged in the broker with a publish-subscribe mechanism. The main draw-

backs of such an approach are that: (i) the enforcement operations are executed

at the broker level, thus hindering the efficiency of the whole system; (ii) the

8

broker is also vulnerable to violation attempts, which could compromise all the205

activities taking part into the system itself.

2.3. Final considerations

To conclude, except for the work presented in [28], there are no specific

solutions available in the literature that address policy enforcement in IoT ap-

plications. The identification of the enforcement mechanisms suitable for IoT210

context, instead, is fundamental for reaching an equilibrium between the guar-

antee of proper security requirements and computing efforts. This is even more

true in a smart health context, where heterogeneous devices and services are

jointly offered.

Some attempts have already been done to define the proper languages for215

the specification of policies, but a standard which addresses specifically the IoT

paradigm is still missing. To address such issues, we propose herein an enforce-

ment framework integrated in a distributed IoT middleware architecture. It is

able to manage the defined policies and the interactions among the involved

entities in a general smart health scenario (presented in the model in Section220

4) through a general-purpose and cross-domain language. The proposed policy

definition identifies the minimal set of policies required for management of a

typical IoT-based application, thus reducing computational overhead. More-

over, users who make use of services provided by IoT system should be allowed

to express their needs in terms of reliability and quality of the data they receive.225

In the future, it is expected that the proposed framework could be integrated

in existing IoT architectures (like OneM2M, OpenIoT, FIWARE, and MOBIUS)

as an orthogonal/additional security component. This kind of integration is not

new in the literature. A first attempt in this direction, in fact, has been done

in [38], where a security plugin for managing access operations has been added230

to the original OneM2M system.

9

3. Policy Enforcement Framework

An enforcement framework should be able to cope with access control and

service provisioning under well-defined requirements. Functions should be con-

figurable in order to make new access control decisions, and enforcing the ex-235

pressed policies. In this section, we present an IoT Policy Enforcement Frame-

work for smart health. It should not be considered as an extension of any

existing model or framework. But it is intended to represent a re-definition of

access control and data exchange in terms of a standardized and generic set of

functions and roles suitable for IoT applications.240

To better describe the advantageous capabilities of the conceived IoT Pol-

icy Enforcement Framework, a use case referring to the provisioning of medical

care and cafeteria services within the department of cardiology in a hospital

will be taken into account. It is introduced in this Section and further inves-

tigated in Section 5. A use case diagram is sketched in Figure 1. It includes245

three main components (i.e., Nodes, Users, and IoTPlatform) and all the main

functionalities offered to them.

First of all, Nodes embrace all the devices able to generate and disseminate

data within the smart health environment. In general, they may include: wear-

able devices that track activities and biological parameters of patients; sensors250

that measure environmental conditions (e.g., temperature, humidity, brightness)

of operating and waiting rooms, corridors, bathrooms, etc.; sensors that recog-

nize the presence of people in a given tracking area; RFID tags that announce

the presence/position of medical equipments and drugs; as well as other kind of

instruments (e.g., cardiac, hemodynamic, respiratory, neurological, blood glu-255

cose, childbirth, and body temperature monitoring devices) able to capture

heterogeneous information during the time. The use case considered in this

work integrates the following nodes:

• ECG: a medical instrument that checks for problems with the electrical

activity of the patient’s heart. It acts as a registered node, connected to260

the IoTPlatform through a wired cable. The medical instrument must

10

Figure 1: Use case diagram

generate trusted data. By considering their sensitivity level, in fact, any

external violation must not be accepted because it will negatively influence

the effectiveness of a medical examination or intervention.

• Cardio bracelet: a wearable device monitoring biological activities of a265

patient (e.g., heart rate). It acts as a non-registered node, connected to the

IoTPlatform through Bluetooth communication. Thus, it may generate

data with a lower security level since it could be more easily compromised.

Users are people requesting various kind of services. Without loss of gen-

erality, it is possible to assume that users may download an ad-hoc advanced270

application on his/her smartphone, possibly equipped with technologies such as

Bluetooth, ZigBee and/or NFC, and connected to the Internet through Wi-fi

or 4G. The user may interact with physical objects and obtain specific digital

services. Note that users have different profiles (e.g., doctors, nurses, patients,

11

visitors, and so on) and each one can be interested in different services with275

respect to the others. For example, nurses may be interested in information

related to the alert generated by instruments monitoring patients’ activities; a

doctor may want to be informed about a group of patients to be examined; pa-

tients may want to request medical care or communicate food preferences to the

canteen; and visitors may want to find public bathrooms, coffee machines, or280

any other recreational space. Also, the application running on the users personal

device is in charge of providing the user with the expected customized contents.

As a consequence, services should be offered in relation to their profiles and

preferences. The use case considered in this work integrates the following users:

• The doctor: a specialist in cardiology, in charge of assisting patients285

during the morning. It acts as a registered user. It has attributes for ac-

cessing medical care and cafeteria services. With reference to the medical

care service, it is only interested in receiving alerts generated by regis-

tered nodes (e.g., ECG in the proposed example); therefore, data with

high levels of security.290

• The visitor: a man that is just interested to know the availability of

a coffee dispenser. It acts as a registered user and it is associated only

with the attributes for accessing the cafeteria service. Therefore, in the

case it tries to access to data generated by medical devices (ECG and car-

dio bracelet in the proposed example), the platform will deny the service295

request.

Finally, the IoTPlatform mainly integrates the IoT Policy Enforcement Frame-

work, which continuously manages service provisioning and access control activ-

ities. Specifically, it handles all the tasks related to node/user registration, data

processing, dynamic and adaptive service provisioning, resource access control,300

etc. IoTPlatform hosts databases for policies, user profiles, and data storage

servers, as well as logical entities and interfaces exposing the set of functions

of the IoT Policy Enforcement Framework (see Section 3.2 and Section 3.1 for

more details).

12

The following subsections provide a thorough description of the IoT Policy305

Enforcement Framework, its components interaction, and the considered access

control model. A pragmatic explanation of actions with the support of a running

example, based on the smart health context just described, will be presented in

Section 5, preceded by a formal representation in Section 4.

3.1. Components interaction310

In the IoT Policy Enforcement Framework, Nodes, Users, and IoTPlatform

interact each other through the following main procedures:

• User registration. At the beginning, each user performs the registration

phase and communicates some personal information (i.e., first name, last

name, age, role within the hospital, etc.) to the IoTPlatform. Such details315

are used by the IoTPlatform for creating the user profile. At the end of the

registration phase, the user receives a message of confirmation, delivering

many parameters (including the credentials to access the system itself).

For the users, the registration phase is mandatory (note that a user who

does not want to provide personal information can register with a minimal320

profile). In fact, user interaction with IoTPlatform has to be controlled in

order to customize the provided services and also to protect the exchanged

information. Once the users are registered to IoTPlatform and have an

associated profile, then they can request the services provided by the IoT

system in compliance with the access policy defined by the framework.325

• User preferences update. After the registration phase, the user may

specify his/her preferences which further customize their profile. These

preferences also refer to the expected levels of data quality and security.

In fact, the data received by IoTPlatform are processed and analyzed

according to well-defined metrics related to data quality and security, thus330

letting the users choose, for example, only accurate information with a

high confidentiality degree.

13

• Node registration. Similar to users, a registration phase occurs for the

data source. In this case, the node may communicate some technical infor-

mation (i.e., kind of source it is, type of communication mode, data type,335

encryption scheme, and so on). Based on these details, the IoTPlatform

is able to execute a preliminary quality and security assessment. Quality

and security levels, however, can be further updated in the future, e.g.,

when the source starts to send data. At the end of the registration phase,

the node receives a message of confirmation, delivering many parameters340

(including the credentials to access the system itself).

Different from the users, the registration phase is not mandatory for nodes,

therefore there would be one or more sources for which the system has

no information, but are allowed to send data. Such information will be

managed by IoTPlatform depending on the levels of security and quality345

requested by the users.

• Node access control. This action defines the beginning of the inter-

action between node and IoTPlatform. The node simply communicates

its intention to send data. The IoTPlatform possibly verifies the node’s

credentials and opens a session.350

• User access control. This action defines the beginning of the inter-

action between user and IoTPlatform. The user simply communicates

its intention to request services and specifies its attributes (i.e., neurol-

ogist doctor, nurse of the department of cardiology, and so on). Then,

IoTPlatform verifies the user’s credentials and determines access to the355

information provided by the system. A session is opened also in this case.

• Data management. When the sensor node sends data to IoTPlatform,

they are stored in a repository as raw data, waiting to be analyzed. If the

node is registered, data are encrypted with credentials obtained during the

registration phase. Otherwise, data are sent in clear. Data received by360

registered node are processed by the framework through data evaluation

and are the object of the score assessment action (specifically, data are

14

sent to specific modules for security and quality score assessment). Score

assessment is also performed for the data received by unregistered sources.

Note that in such a situation the data is not discarded, but the lower365

reputation of the source will influence the use in the user service provision.

• Service provisioning. A user, who has registered, can ask for the ser-

vices made available by IoTPlatform. The request is made in a secure

manner (i.e., the information is encrypted with credentials sent in the reg-

istration phase). In such a context, the user (i.e., the doctor, the patient,370

or others) has to be aware of the security and the quality of the received

and transmitted data, as well as the accuracy, completeness and integrity

of the retrieved information. The definition of specific policies, according

to the users consensus, aims at guaranteeing the desired level of security

and data quality. The policies are stored in IoTPlatform that guaran-375

tees the access control, the key management, and the enforcement of the

policies themselves (Section 3.2). Note that the proposed solution pre-

serves the user privacy, since, without an ad-hoc approach, it is possible

to derive sensitive data by analyzing user behavior and learning habits.

Finally, the services are provided to the users taking into account user’s380

attributes, user’s preferences (expressed in terms of quality and security

levels), and access policy.

3.2. The framework

Usually, an enforcement framework includes a Policy Enforcement Point

(PEP), a Policy Decision Point (PDP), and a Policy Administration Point385

(PAP) [39]. PEP is the point which intercepts the requests of access to re-

sources from users, and makes a decision request to the PDP in order to obtain

the access decision (i.e., approved or rejected). Each data access request is then

routed by the PEP to the PDP, which evaluates such requests against the autho-

rization policies, before taking the access decisions. To this end, the PDP queries390

a policies store. Once the PDP completes the evaluation, it returns a response

to the PEP. Based on this decision, PEP either permits or denies access to the

15

user/resource. The authorization policies are finally administered through the

PAP, which allows the runtime change/update of policies. The aforementioned

functions are generally performed in real systems by an application.395

In the considered smart health domain, each IoTPlatform includes a policies

store, a PEP, a PDP and a PAP, while each user has an application representing

an interface for the user device and IoTPlatform. More in detail, a user logs

on the application running on his/her device using the provided GUI. A session

is opened, during which the user can request for the services provided by IoT-400

Platform on the basis of the accessible resources. All application components

interact with the underlying PEP. As regards nodes, a separate discussion has

to be made, since the system has to be able to deal both with registered and un-

registered nodes (i.e., data sources), while users are always registered. Security

among the involved components (i.e., IoTPlatform, users, nodes) is guaranteed405

by means of encryption mechanisms.

The way PEP, PDP, and PAP modules interact with the proposed smart

health architecture is highlighted in Figure 2. Although the figure shows only

one IoTPlatform, the enforcement framework is expected to run in a distributed

manner on multiple platforms, since a typical IoT application may involve a large410

area and a large number of users and data sources. In fact, IoTPlatform aims to

create a middleware layer able to process the data provided to the IoT system

closer to the sources, in order to cope both with scalability and computational

issues. Hence, the distribution of policies and their update and synchronization

processes should be taken into account in a real IoTPlatform implementation.415

In the smart health context, it is possible to have multiple platforms interacting

with each other. For example, hospitals, clinics, and pharmacies that cooperate

within the same geographical area. In this case, platforms should share the same

security policies (in the same IoT context) and each of them should have their

own policy enforcement component. For the sake of simplicity, in the following420

discussion we refer to only one IoTPlatform.

We remark that an important advantage of the adopted policy-based con-

trol is that the controlling unit of the system (i.e., the enforcement framework)

16

Figure 2: Enforcement architecture for the smart health

is kept decoupled from other management components (i.e., analysis and pro-

cessing operations, request handler, resource handler). As a consequence, the425

IoTPlatform behavior can be managed and/or changed without modifying the

software or the user/node interfaces. As detailed in the following sections, all

the interactions happening with IoTPlatform are regulated by policies, which

specify the rules interpreted and enforced by the framework itself. Hence, if the

conditions change or new services or blocks are added, only the corresponding430

policy rules have to be adapted without the need to do the updates off-line. In

fact, policies can be loaded at runtime through the PAP into the policy store.

More in detail, the policy store contains a list of configurations that are used

for a policies’ composition. Such configurations are represented in a format,

according to the adopted policy specification language, described in Section435

3.3. A policy is associated to a particular interaction that happens within

17

the system (which acts as a primary key for establishing the operations to

enforce) and the policy satisfaction will depend on the attributes associated to

the user/node involved in such an action. Such a feature increases the flexibility

of the framework and makes it suitable for smart health applications, which440

require a high degree of availability, especially in large scale environments.

3.3. Access control model and policy language

Even if many services may coexist in a smart health environment, users

may not be allowed to access all of them. The services are provided to the users

taking into account user’s profile, user’s preferences, and access policy. However,445

in order to handle possible violation attempts, proper rules should be defined

for identifying the actions to be performed, guaranteeing the correct application

of policies.

Once the components of the enforcement framework and its scope are de-

fined, the main challenge is the identification of a minimal set of primitives able450

to specify, and subsequently enforce, a large variety of attribute-based rules, on

the basis of the interactions taking part into the smart health system (Section

3.1). To this end, IoTPlatform generates a series of policies in the form of XML

syntax, in order to guarantee satisfactory and trustworthy services. Through

the presented language, policies are expressed and enforced, in order to provide455

a unifying framework to support a wide range of attribute-based policies. Due to

the large number of possible smart health applications, such a language should

be flexible enough to represent the analyzed contexts, both in a general-purpose

and in a customizable way. For such reasons, we decided to adopt XML and

define proper tags for specifying data input and operations to be controlled and460

enforced. XML allows to express the whole set of policies for each involved

entity, which, as specified in Section 4, are mainly distinguished in: User, Node,

and IoTPlatform. Each of them has specific attributes, as described in the next

sections, which are stored in the policy store of the IoTPlatform. According to

the defined attributes, each entity is allowed to perform different actions.465

As regards the mentioned attributes, it is worth noting that the access con-

18

trol model adopted in this paper is inspired by the Attribute Based Access

Control (ABAC) mechanism [40]. It offers scalable, flexible and fine-grained

access control. With ABAC, the subjects that want to access to the resources,

the subjects that expose the resources, and the resources themselves are de-470

scribed by means of specific attributes. These attributes should be properly

defined for handling access permissions in a healthcare scenario. Moreover, to

jointly address heterogeneous smart health environments, these attributes must

be configured by means of the adopted policy specification language, based on

XML.475

The main attributes considered in this work refer to security and quality

levels of the data managed by IoTPlatform, In fact, the final goal of the pro-

posed framework is to provide security- and quality-aware information to the

end users, possibly taken into account users preferences. In this way, the enforce-

ment framework forces the system to respect the desired security and quality480

requirements of authorized users. The policies are distinguished depending on

the actions currently performed by the entities within the smart health scenario.

4. IoT Model

The design of the presented IoT Policy Enforcement Framework originally

started from the definition of a general UML conceptual model, just published485

in [41]. Such a model represents the components (Node, User, Service, IoTPlat-

form) involved in the conceived IoT Policy Enforcement Framework, and their

interactions, as well as the levels of security and data quality. The model is

suitable for heterogeneous IoT applications and architectures, including those

devised for smart health contexts. It is detailed in the following sections in order490

to point out a formal representation of the entities, their attributes, functions

and roles, and the performed actions and obligations. This helps clarify the

contribution of the IoT Policy Enforcement Framework.

19

4.1. Node

From a technological point of view, the different technologies involved in495

the acquisition of information from the environment, such as Wireless Sensor

Networks (WSN), RFID, nanodevices, actuators and so on, are represented by

the class Node. Such a class is extended by the sub-classes representing the

mentioned technologies, as shown in Figure 3.

Figure 3: Class Diagram - Node

Each instance of the class Node is characterized by a pair function-role,500

identified by NodeRole and NodeFunction classes. NodeRole is strictly related

to the privacy concept [42] and introduces three sub-classes:

• nSubject represents the node that senses or generates the data

• nProcessor represents the node which processes data by executing some

actions (i.e., forwarding, aggregation)505

• nController represents the node which verifies that the actions perfomed

on data satisfy the defined policies [43] [44] [45].

As regards NodeFunction, which represents the task performed by a node,

the UML model does not specify any sub-class, since the functions depend on the

20

specific IoT application context in which the system is employed (e.g., shopping510

retail, hospital, university).

The class NodeAction is associated with the pair function-role, and specifies

the set of actions which can be undertaken by the node itself. The identified

actions are:

• Processing, when a node executes some operations on data515

• Trasmission, when a node sends data to another node

• Reception, when a node receives data from another node.

An action is executed under some purpose (nPurpose class) that specifiies

the reasons under which it is possible to handle data (i.e., marketing purpose, re-

search purpose, health purpose). NodeAction is also associated with one or more520

obligations (nObligation class), in order to model the fact that the execution of

a set of mandatory actions is guaranteed by the processor and/or the controller

at the end of the processing activities. An example of obligation is whenever

an inconsistency or a violation is detected, then some countermeasures, such as

generation of an error/alert message, must be taken.525

In order to guarantee authentication, integrity, confidentiality and non re-

pudiation, two groups of keys, named NodeSignatureKey and NodeActionKey

are associated to NodeAction. From one side, message integrity and peer au-

thentication are offered through asymmetric encryption. Therefore, NodeS-

ignatureKey embraces the public key (i.e, NodeSignatureKey.public) and the530

private key (i.e, NodeSignatureKey.private) of the node. While the public

key must be delivered to the platform during the registration phase, the pri-

vate key must be kept secret. Indeed, to authenticate and guarantee the in-

tegrity of its messages, the node can encrypt specific fields of these messages

with the NodeSignatureKey.private. The platform is able to verify the valid-535

ity of received messages by decrypting the aforementioned fields with NodeS-

ignatureKey.public. From another side, data confidentiality is offered through

symmetric encryption, where sensitive data are protected with NodeActionKey.

21

Finally, the joint adoption of NodeSignatureKey and NodeActionKey also en-

sures non-repudiation. In fact, a node that authenticates and protect messages540

with NodeSignatureKey.private and NodeActionKey, respectively, cannot deny

to have generated these messages. Since no other entities in the system are in

possession of these cryptographic material, in fact, the messages authenticated

and protected with NodeSignatureKey.private and NodeActionKey are surely

generated by the node.545

Communications among nodes occur by exchanging instances of the class

NodeMessage. A message is composed of several heterogeneous kinds of data

(e.g., numbers, text, multimedia), which can contain different information, de-

pending on the application context. Furthermore, the instances of abstract class

NodeData may be distinguished as:550

• SystemData, which represents the data generated by the IoT system (e.g.,

the information provided by a locator tag related to the movements of a

particular user or object in a target tracking application)

• HumanData, which includes the data produced by users, for example by

means of a social network555

Moreover, both system and human data are classified in three different cat-

egories, represented as extensions of SystemData and HumanData classes:

• sIdentifiable and hIdentifiable, which represent the information used to

uniquely identify the nodes (i.e., node identifiers)

• sSensitive and hSensitive, which include information that should not be560

freely accessible because they may reveal private acquired data

• sGeneric and hGeneric, which represent other generic information not

included in the previous classes

Each instance of SystemData or HumanData is associated QoPmetadata and

DQmetadata information, which represent the non functional properties related,565

respectively, to the levels of security and data quality of the data themselves.

22

4.2. User

Besides nodes, another fundamental entity is represented by the class User.

It concerns all humans that could interact with the IoT system, for example

by means of their personal devices (e.g., smartphone, NFC, tablet). Note that570

users are distinguished from nodes due to the fact that the former require one

or more services from the infrastructure, while the latter acquire the necessary

information to provide such services.

In addition, in order to provide each user with the best services, he/she

requires a personal Profile, as represented in Figure 4. More in detail:575

• Profile includes an aggregation of PreferenceOnService, used to customize

the services on the basis of user requirements in terms of security (i.e.,

PreferenceOnSecurity) and quality (i.e., PreferenceOnQuality), as well as

the communication keys.

• Profile also concerns UserData, which can be further classified as:580

– Identifiable, including data referred to the user identity (i.e., first and

last name)

– Sensitive, containing information related to user’s private life and

habits, such as health conditions, food intolerances, religious beliefs

and so on585

– Generic, regarding general information not belonging to the previous

classes.

Classes UserRole, UserFunction, and UserAction are intended in the same

way as for nodes. In particular, as regards UserAction:

• A user, before interacting with the IoT system, has to register himself/her-590

self (Registration class)

• Then, the user has to accept the agreement with the service provider (i.e.,

the consent to handle user personal data for specific purposes and under

some obligations - class Consent)

23

Figure 4: Class Diagram - User

• ServiceRequest represents the user requests for services595

• UpdatePreference represents the capability of the users to change at any

time their preferences expressed in their own profile.

Furthermore, the communications occur by means of packets, which are

instances of UserMessage class. Note that, in an IoT scenario, the number of

nodes and users varies over the time.600

4.3. IoTPlatform

The heterogeneous data, acquired by nodes and users, are handled by IoT-

Platform. IoTPlatform plays different roles (IoTPlatformRole class), and func-

tions (IoTPlatformFunction class), in relation to the current action and the

application domain. As regards IoTPlatformAction, besides the obvious Dat-605

aProcessing and ServiceProvision, the main tasks, shown in Figure 5, are:

• UserProfileDefinition, which models the acquisition of the users data and

preferences

• ConsentAcquisition, which represents both the user acceptance of the

agreement with the requested service, and user data management, ac-610

cording to the established policies

24

• AccessControl, which represents the execution of the access control opera-

tions, in order to restrict the access to the system only to authorized and

pre-registered users

• PolicyDefinition, which represents the definition of a policy for ensuring615

user privacy and, in particular, anonymity

• Enforcement is required in order to force compliance with the defined

policies, under which the user has given the consent to handle his/her

data

Figure 5: Class Diagram - IoT Platform

IoTPlatform deals in particular with encryption and decryption keys. As620

already discussed before, different pools of keys are used for different purposes.

First, IoTPlatform is in possession of its own public (i.e., IoTPlatformSigna-

tureKey.public) and private (i.e., IoTPlatformSignatureKey.private) keys to use

for authenticating itself and ensuring the integrity of messages sent to both

Nodes and Users. During the registration phase, the public key of the platform625

is shared with each registered entity, without incurring to security flaws. On

25

the contrary, the corresponding private key must be kept secret (as explained in

Section 5 and Appendix Appendix A). Second, IoTPlatform stores the public

keys of all registered Nodes and Users, delivered by them during the registration

phase and consequently used for authentication purposes (see Section 5 and Ap-630

pendix Appendix A). Third, the platform also shares with each registered entity

a unique symmetric key. The term unique means that a symmetric key cannot

be used by more than one registered user, for security reasons. This key is gen-

erated by the platform, delivered to the registered entity during the registration

phase, and used to encrypt data that will be exchanged within the platform in635

the future (as explained in Section Section 5 and Appendix Appendix A). Based

on these considerations, asymmetric keys used for authentication and integrity

services are defined within the class IoTPlatformSignatureKey. Symmetric keys

used for confidentiality purposes are defined within the class IoTPlatformAc-

tionKey. It is important to highlight that while each user/node has an unique640

signature key, which represents an access credential, the action key is directly

related to the pair function-role currently played by the user/node. A simi-

lar system is adopted in [43] and [44] as regards WSN field. Such a behavior

ensures the privacy compliance of the transmitted information, both from user-

s/nodes towards IoTPlatform and from IoTPlatform towards the requesting645

users. Each user/node encrypts its data with its proper action key. When IoT-

Platform receives a request of data from a user, it performs some queries in

order to establish, first, if the user is authorized to get such data and, second,

the user’s preferences in relation to the security and quality properties of the

requested services. Note that the defined solution supports any kind of encryp-650

tion technique and any key distribution mechanism, although the details related

to such issues are out of the scope of this work.

4.4. Service

Finally, Service is another core class of the model, since all the IoT system

activities turn around the request and provision of services. The users give655

information related to their identity, life-style, interests, and preferences, in

26

order to obtain customized services. Such a service has to guarantee several

non-functional properties, shown in Figure 6, which include:

• Data Quality (DQ), since data are collected from different sources, the

state of consistency, validity, timeliness, and accuracy of the provided660

data has to be modelled

• Quality of Protection (QoP), which regards the insurance of well-defined

levels of security.

Figure 6: Class Diagram - Service

A service is simple or atomic if the users are enabled access to one source,

whereas it is composite if the information provided by multiple sources are665

integrated. The set of services can be directly and dynamically configured by

a network administrator and can be orchestrated by a remote server through

standard Web services approaches.

Summarizing, Figure 7 represents the entities just separately described in a

unified way, along with their relationships.670

5. Example Case Study

While considering the formal model of the conceived framework described in

Section 4, the use case presented in Section 3 is further investigated. Specifically,

the interaction among framework’s components is explained through a running

example.675

As described in Figure 8, the interaction between Nodes and IoTPlatform

embraces: nodes registration, node access control, and data management. The

27

Figure 7: Class Diagram - IoT System

interaction between Users and IoTPlatform, instead, include the following pro-

cedures (see Figure 9): user registration, profile management, user access con-

trol, and service provisioning.680

All the messages reported in both Figure 8 and Figure 9 are exchanged

under a secure connection, through HTTPs. More technical details are discussed

below.

5.1. Nodes registration

In line with the model described in Section 4 (see Node class), the IoTPlat-685

form identifies a node through the following properties and attributes:

• Registered (possible values yes/no): is an attribute which clarifies if the

considered node is registered or not to IoTPlatform. Note that the system

accepts data both from registered and unregistered sources, but it will

manage the provided information in a different manner with respect to690

user preferences

• Identifier : is an identifier given by IoTPlatform to the sources

• NodeSession: is the session identifier currently owned by the node (i.e.,

the identifier of the last session in which the node interacted with IoT-

Platform)695

28

Figure 8: Node interactions with IoTPlatform

• Source: identifies the kind of source (e.g., sensor node, RFID, actuator)

• CommunicationMode: identifies the mean of communication used in order

to transmit the data (e.g., WiFi, 3G, Ethernet)

• DataType: represents the kind of data provided by the source. Note that

a source may transmit multiple kinds of data (e.g., a double for a temper-700

ature and a string for a reference area)

• EncryptionScheme: represents the encryption technique used by the source

for its communications with IoTPlatform; in case of unregistered sources,

the corresponding fields related to the encryption scheme and keys are

marked as undefined705

• NodeSignatureKey : is the public key of the node, sent to IoTPlatform

during the registration phase as already described in the previous Sec-

29

Figure 9: User interactions with IoTPlatform

tion, it is used to offer message integrity and peer authentication. It it

important to remark that this public key can be delivered by means of a

X.509 certificate. In this way, the whole system becomes robust against710

man-in-the-middle and impersonation attacks.

• NodeActionKey : is the symmetric key given to the node by IoTPlatform

after the registration phase, which is used to encrypt the information

exchanged between node and IoTPlatform. Note that a node could have

more than one action key, in relation to the function played at a specific715

moment (e.g., a node may acquire the transmitted data or only forward a

data received by another source)

• QoPmetadata: when the source sends data, IoTPlatform begins to per-

form an analysis of such information, in terms of confidentiality, integrity,

authentication, and privacy. It also takes into accout the kind of source,720

30

the communication mode (e.g., a wifi channel is considered less secure

than a wired one), and the adopted encryption scheme (i.e., its level of

robustness). As a result, a set of metadata is associated to the information

provided by each source (both registered and non registered), which will

allow the users to filter the data they want to receive725

• DQmetadata: as for security features, IoTPlatform analyzes the data pro-

vided by each source in terms of completeness, accuracy, timeliness, and

reputation, considering both historical feedback about the source behavior

and the frequency of the information update.

Both QoPmetadata and DQmetadata are evaluated during data processing730

activities. Such scores are in the range [0,1]. The definition of proper algorithms

for the assessment of the security and data quality requirements is out of the

scope of this work, since it is subject of another work [46].

In the considered use case, only ECG represents a node that registers itself

to IoTPlatform. To this end, it sends a request, as presented in Listing 1 in735

Appendix A. In the request, it specifies what kind of source it is, what type of

communication mode it will use, the kinds of data it will transmit, and, finally,

the encryption scheme to be used for authentication purposes, performed with

NodeSignatureKey.

IoTPlatform replies to the node request by providing a message which con-740

tains its public key (i.e., IoTPlatformSignatureKey.public) andNodeActionKey,

as well as the session and the node identifier, established by IoTPlatform (see

Listing 2 in Appendix A). Note that session and the node identifier are encrypted

with the private key of the platform (i.e., IoTPlatformSignatureKey.private) for

authentication reasons.745

The registration process performed by the ECG node is depicted in Figure

10.

31

Figure 10: Registration phase for ECG

5.2. Nodes access control

Registered and non-registered sources can start at any time to interact with

the IoT system. When the interaction between node and IoTPlatform begins,750

the action is classified as access control. If the node is already registered, as in

this case, the task to be performed by IoTPlatform is the node authentication

by means of the public-key algorithm previously introduced. The node sends

its identifier and a digital sign generated with NodeSignatureKey.private. Then,

the platform verifies the digital sign by using NodeSignatureKey.public. In the755

case the node is not registered, instead, the identifier is transmitted in clear

and the authentication procedure is not executed. As, said, the registration

phase is not mandatory for nodes, therefore there would be one or more sources

for which the system has no information, but which are allowed to send data.

Such information will be managed by IoTPlatform depending on the levels of760

security and quality requested by the users. If a source has already interacted

with IoTPlatform, it will be recognized by the identifier previously assigned.

Instead, it is still an unknown source and IoTPlatform assigns a new identifier

32

in response (which is stored in IoTPlatform as described in Listing 7 in Appendix

A).765

Listings 3 and 4 in Appendix A describe this behavior in XML syntax, con-

sidering the registered ECG previously described. Listings 5 and 6 in Appendix

A, instead, refer to the cardio bracelet, which acts as a non-registered node.

Note that the response includes the session for all kinds of sources. In such a

way, IoTPlatformalways knows the nodes currently connected to it, since in an770

IoT context nodes continuously join and leave the network.

To conclude, within IoTPlatform, the registered and unregistered nodes are

stored as presented in Listing 7 in Appendix A. As regards the no registered

source, an identifier is also assigned and stored, since IoTPlatform is able to rec-

ognize a node which had already sent some data. QoPmetadata and DQmeta-775

data may be further assigned by IoTPlatform during its activity, when sources

start to send data. Note that, presumably, a registered source will present higher

levels of security and quality for its data with respect to a unregistered one.

The access control process for both ECG and cardio bracelet nodes is de-

picted in Figure 11.780

5.3. Data management

As already anticipated in Section 3.1, data management integrates both

transmission and processing tasks.

Data transmission: ECG and cardio bracelet send data to IoTPlatform.

Data are stored in a repository as raw data, waiting to be analyzed. The kind of785

action performed is defined as transmission. IoTPlatform receive, as input from

the node its identifier, the data, and the type of data which it is transmitting.

If the source is registered, the data and the type of data are encrypted with

the proper NodeActionKey. In addition, and similarly with the access control

phase, the identifier is transmitted along with its digital sign, obtained through790

the public key of the node (i.e., NodeSignatureKey.public. At this stage, no data

verification has to be performed, since the data is not analyzed yet. In the case

the source is not registered, both data and identifier are transmitted in clear.

33

(a)

(b)

Figure 11: Access control for (a) ECG and (b) cardio bracelet.

34

Listing 8 in Appendix A represents the XML syntax of the described behavior

for the ECG instrument. Listing 9 in Appendix A, instead, represents the XML795

syntax of the described behavior for the cardio bracelet.

Data evaluation and security/quality score assessment: Once the

data are stored in the raw data repository, they are sent to the enforcement

framework, which performs the data evaluation task. For registered sources,

IoTPlatform decrypts the received encrypted data d and the data type dt using800

the key NodeActionKey and the encryption algorithm stored by IoTPlatform

after the registration phase (Listing 1 in Appendix A). Then the data are subject

of the score assessment action and sent to specific modules for security and

quality score assessment.

Score assessment is also performed for the data received by unregistered805

sources; they have no NodeActionKey, therefore no decryption is performed on

data. In such a situation the data is not discarded, but the lower reputation of

the source will influence the use in the user service provision.

Listing 10 and Listing 11 in Appendix A report the XML representation of

data processing for the ECG instrument and the cardio bracelet, respectively.810

Moreover, the data transmission process is also depicted in Figure 12.

5.4. Users registration and profiles management

IoTPlatform requires user’s personal information (i.e., first name, last name,

age, role within the smart health environment) and also provides him/her the

credentials to access the system itself: UserSignatureKey (only the public key)815

and UserActionKey. Information (e.g., first/last name and phone number)

are classified as identifiable data, whereas age and nationality are classified

as generic data, since they can be exploited only for statistical purposes. An

important step is that each user has to give the consent for the processing of

personal information in order to let the system use his/her preferences to pro-820

vide customized services. Such personal information will be used according to

the established policies (e.g., information can be used for a specific purpose and

under a proper obligation). All data belonging to the user profile are stored also

35

(a)

(b)

Figure 12: Data transmissionfor (a) ECG and (b) cardio bracelet.

36

by IoTPlatform. Summarizing, the following attributes are considered, in order

to define the user profile:825

• Username: is the nickname chosen by the user when he/she registers

himself/herself to IoTPlatform (it can be considered, with reference to

the model in Section 4, an attribute of Profile). Note that the username

could be conceived as a pseudonym for the users, thus improving their

level of privacy.830

• UserIdentifier : is an identifier given by IoTPlatform to the users.

• UserSession: is the session identifier currently owned by the user (i.e., the

identifier of the last session in which the user interacted with IoTPlat-

form).

• UserFunction: is the function assigned by IoTPlatform to the registered835

user. For example, a user could be a consumer of the services (i.e., a simple

customer) offered by IoTPlatform or an administrator of the resources

and information involved in the IoT infrastructure (e.g., for statistics or

monitoring purposes).

• UserSignatureKey : is the public key of the user, sent during the registra-840

tion phase. It is used for authentication purposes (as already described

for the node).

• UserActionKey : is the symmetric key given to the user by IoTPlatform

after the registration phase, which is used to encrypt the information

exchanged between user and IoTPlatform. Note that a user could have845

more than one action key, in relation to the function played at a specific

moment (e.g., a user may act both as a customer and an administrator in

a certain domain).

• UserAction: is the action currently executed by a user (e.g., registration,

login, service request) Each action is coupled with further attributes:850

37

– Registration (possible values yes/no): points out if the user is reg-

ularly registered or not. If not, further interactions with the IoT

system must be prevented

– Consent (possible values yes/no): points out if the user gave the

consent to IoTPlatform to handle his/her personal data855

– UpdatePreference (possible values not-specified/updated): points out

if the user has specified the preferences related to the IoT services

(in this case this attribute is set to updated) or not (in this case the

user does not specify any preferences, therefore no customization is

provided by IoTPlatform)860

– ServiceRequest (possible values enabled/disabled): points out if the

user is enabled to request services to IoTPlatform (e.g., a user may

be disabled for the misuse of the services).

• PreferencesOnService: are divided in:

– PreferencesOnSecurity : specifies the required security requirements865

and their priority, which is specified by means of the order attribute

(i.e., in the form of a decreasing scale from 1 to 4). The available

properties are confidentiality, integrity, privacy, and authentication;

to each of the user can specify a score in the range [0,1]. The meaning

of such scores will be clarified later870

– PreferencesOnQuality : specifies the required quality requirements

and their priority, which is specified by means of the order attribute.

The available properties are completeness, timeliness, accuracy, and

source reputation. Note that, as well as for PreferencesOnSecurity,

it is possible to assign the same order to different properties and also875

a score. The order will be used by IoTPlatform when a user makes

a request for a service. The information provided by IoTPlatform

will be compliant with the desired order (e.g., the integrity of the

information takes the priority with respect to privacy and confiden-

38

tiality).880

Doctor registration and profile update: As an example, the doctor

registers himself to IoTPlatform in order to utilize the services provided, and

chooses doctor as his username. The request for registration is an action per-

formed by users and denoted by registration in Listing 12 in Appendix A; it

includes the following information as input: the chosen username, the public885

key (i.e., UserSignatureKey.public), the function for which he wants to register

(e.g., doctor, cardiology), and the consent for handling his data.

IoTPlatform responds with a confirmation message (the performed action

is denoted by registration response) to the requesting user. Such a response in-

cludes a summary of the registration (i.e., it confirms the received username and890

function) and the successful actions performed, which are: (i) the assignment of

an identifier and a session; (ii) the request for the consent for interacting with

the IoT system (action consent acquisition in the model in Section 4); (iii) the

registration within IoTPlatform; (iv) the enabling for the request of services;

(v) the public key of the platform (i.e., IoTPlatformSignatureKey.public). Iden-895

tifier a session are transmitted together with their digital signs, obtained with

IoTPlatformSignatureKey.private).

The registration process performed by the doctor is depicted in Figure 13.

Furthermore, IoTPlatform informs the user about the possibility of speci-

fying his preferences about the security and quality levels of the information900

provided to him in future interactions (at this time, the preferences are set to

not specified). Finally, IoTPlatform provides the user with the proper UserAc-

tionKey (see Listing 13 in Appendix A). In other words, the service provider

gives the smartphone the required credentials, which aim at guaranteeing access

to the service itself by means of secure communications.905

After the registration phase, the doctor may specify his preferences, which

are elaborated by IoTPlatform in the way presented in Listing 14 in Appendix

A referred to a doctor profile. In this example, the doctor requires a high level

of confidentiality (order 1 and score equal or greater than 0.5), and gives less

39

Figure 13: Registration phase for the Doctor

importance to integrity (order 2 and score equal or greater than 0.6), privacy and910

authentication (order 3 and 4, and scores equal or greater than 0.8). As regards

data quality, he requires a high level of completeness (order 1 and score equal

or greater than 0.8), timeliness (order 2 and score equal or greater than 0.5),

accuracy (order 3 and score equal or greater than 0.8), and source reputation

(order 4 and score equal or greater than 0.6).915

Note that the attribute related to the preferences is set to updated and the

user profile definition is the action performed by IoTPlatform, as presented

in the model in Section 4. Summarizing, after the registration, the users can

connect themselves to IoTPlatform through their personal devices using the

exchanged credentials, then communicate with IoTPlatform. The services are920

provided to the users taking into account both Profile and PreferenceOnService,

which can always be modified by the user through the downloaded application

itself.

40

Visitor registration and profile update: The visitor registers himself to

IoTPlatform in order to exploit the services provided, and chooses visitor as his925

username. The request for registration is described in Listing 15 in Appendix A.

The corresponding confirmation message is reported in Listing 16 in Appendix

A. The visitor does not provide any further details useful to update his profile.

The registration process performed by the visitor is depicted in Figure 14.

Figure 14: Registration phase for the visitor

5.5. User access control930

Once the users are registred to IoTPlatform and have an associated profile,

they can request the services provided by the IoT system in compliance with the

owned function defined during the registration phase. In this context, access

control is the first operation to be executed.

In the considered use case, the doctor accesses the IoT system through his935

username and identifier. The digital sign of the identifier, generated by using

UserSignatureKey.private is provided too. Moreover, the doctor registers him-

self for a session playing a specific function (in this case, cardiology), therefore

41

the credentials have to match also with the desired function, since further au-

thorization is derived by IoTPlatform from this information. Also in this case,940

the task performed by IoTPlatform is the verification of the digital sign of the

identifier.

The procedure is presented in Listing 17 in Appendix A. The first performed

action is the evaluation of the existence of the user with username ”doctor” with

the specified cardiology function and identifier in the repository. Note that the945

service request and provision depend on the function currently performed by the

user himself. To provide further insight, the visitor access operation is presented

in Listing 18 in Appendix A.

The access control process for both doctor and visitor is depicted in Figure

15.950

5.6. Service provisioning

A registered user can ask for the services made available by IoTPlatform.

Note that user interactions with the IoT system are complex, since data man-

agement has to be customized depending on user functions and preferences in

terms of security and data quality.955

Medical care service allowed to the doctor. Suppose that a doctor

wants to be aware about the alerts generated by registered monitoring devices

with high levels of security (the ECG machine in the presented example). The

request of this service is made in a secure manner (i.e., the information are

encrypted with UserActionKey sent in the registration phase). IoTPlatform960

receives as input his username, his function, and the requested service Cardiol-

ogyAlerts. Listing 19 in Appendix A shows the corresponding XML representa-

tion.

In order to obtain remote services and resources, the user access attempts

are checked against the policies considering: the requester’s current session id,965

the activated functions, and the available permissions. Moreover, as regards

the service invocation, we treat the services as object instances identified by

a hierarchical name space (e.g. a URI). A service is conceived as a piece of

42

(a)

(b)

Figure 15: Access control for (a) doctor and (b) visitor.

43

software able to fulfill a specific task managing the available data. There is no

direct interaction among users and services, but a well-defined programming970

interface is needed through a software application. Services can be accessed by

users once they are published as object instances.

Now, the service request, previously encrypted with the proper UserAction-

Key, has to be decrypted, in order to verify if it is a valid request. If not,

the request is discarded by the system. In order to verify the validity of the975

request, IoTPlatform compares the function played by the requesting user and

the function provided by the system itself (i.e., doctor, cardiology): if the re-

questing user is not a doctor with the cardiology attribute, then the request is

discarded. However, if the requesting user corresponds to a doctor with cardiol-

ogy attribute, then IoTPlatform proceeds with the service verification action, in980

which the service CardiologyAlerts request is decrypted with the proper User-

ActionKey. At this point, the system retrieves (through the function getData)

the data corresponding to the requested service CardiologyAlerts (temporarily

stored in the variable named listOfData) and filters them on the basis of user

preferences in terms of security and quality levels (specified in Listing 14 in Ap-985

pendix A). In Listing 20 in Appendix A, the XML code expresses this behavior,

defining a function named dataComplianceForUser with two parameters (the

source of the data and the username). Such a function retrieves the security

and quality scores related to the source and compares them with the user pref-

erences. As a result, only the compliant data are sent to the interested user.990

Note that the proposed language is independent from the implementation of the

presented functions (e.g., verification, dataComplianceForUser).

To conclude, Figure 16 shows the interaction between doctor and platform

during the service provisioning process.

Medical care service denied to the visitor: Since the goal of an enforce-995

ment mechanism is to force the system to be compliant with the defined policies,

then it has to take the proper countermeasures when a violation is detected (e.g.,

a user tries to request services or perform actions denied to him/her).

For example, the visitor is only allowed to enjoy cafeteria service. Therefore,

44

Figure 16: Medical care service allowed to the doctor

in the case it tries to access the data generated by ECG and cardio bracelet,1000

the enforcement mechanism has to prevent the disclosure of the requested data.

These are only available, for instance, to the doctors of the cardiology depart-

ment.

Also in this case, the request of this service is made in a secure manner

(i.e., the information are encrypted with UserActionKey sent in the registra-1005

tion phase). IoTPlatform receives in input his username, his function and the

requested service CardiologyAlerts. Listing 21 in Appendix A shows the corre-

sponding XML representation.

According to the access policy, the visitor’s request is denied. Listing 22 in

Appendix A shows the IoTPlatform behavior in such a situation. Note that,1010

with respect to Listing 20, IoTPlatform does not proceed with the retrieval of

the data corresponding to the requested service, since the username-function

does not match with the policy established for such a service. Moreover, the

enforcement framework may log such kinds of events in order to inform the

system administrators of violation attempts.1015

45

To conclude, Figure 17 shows the interaction between visitor and platform

during the service provisioning process.

Figure 17: Medical care service denied to the visitor

We remark that this represents an important example of application of the

proposed enforcement framework. It may be easily adapted to other application

scenarios by defining new functions for the users and new kinds of data provided1020

by the nodes.

5.7. Final considerations on security

The discussed solution aims at mitigating and/or counteracting possible vi-

olation attempts or attacks to the IoT system. More in detail, the main task

performed by the enforcement framework is the verification of the correct access1025

to the resources. To this end, authentication is required by the interested users,

and the services’ information is provided in an encrypted way. In this case, an

impersonation attack from an illegitimate entity may hinder the confidentiality

of the transmitted data. However such a malicious entity, in order to succeed

in the attack, should know both the signature key to authenticate itself to the1030

46

IoT platform and the action key to decrypt the received data. This mechanism,

based on two separated keys, certainly improves the reliability of the system.

Also, a man-in-the-middle attack, that may intercept the information if the

adopted encryption mechanism is weak, is mitigated by the use of two keys.

A more robust system could be obtained by introducing X.509 certificates in1035

order to validate the signature keys at the registration phase for both registered

sources and users. Moreover, the encryption of the timestamp associated to the

transmitted message allows prevetion of potential replay attacks. Note that we

did not point out a specific encryption schema, since it can be freely chosen by

the administrators of the IoT platform according to the domain needs.1040

The main issue arises with the unencrypted data sent by unregistered sources.

In this case, the integrity of such information may be compromised by malicious

entities. The enforcement framework does not prevent this behavior, but low

scores will be assigned to security and quality levels of the data received by such

sources, thus informing the users of the nature of these data.1045

Whereas, the enforcement framework does not deal with attacks to network

resources (e.g., denial of service), but we are considering, as future work, to in-

troduce an intrusion detection system, able to recognize various kinds of attacks

and, thus, put in place proper protection mechanisms.

6. Discussion1050

To provide further insight, this section discusses some important require-

ments that should be taken into account in the case the proposed IoT-based

policy enforcement system will be integrated into concrete smart health archi-

tectures.

6.1. Storage requirements1055

As regards storage, the proposed IoT Platform requires storing the following

information, possibly in proper repositories (e.g., on a dedicated server, or on a

cloud):

47

• The data related to registered sources

• The users’ profiles1060

• The policies

• The data received by the IoT Platform (e.g., the raw data collection).

Note that the data transmitted to the IoT Platform should not be perma-

nently stored on the platform itself, because an IoT system is conceived as a

mean for providing services in real time with current data, thus proper routines1065

can be developed in order to remove obsolete information and avoid congestion

states.

Therefore, the actual storage depends on the number of connected users,

and the number of active policies. These are further established on the basis of

the kinds of services offered by the IoT platform itself and the quantity of users’1070

attributes used for users’ profile definitions (e.g., the number of users’ functions

made available).

6.2. Software/hardware requirements

With reference to the nodes, the described example reveals that the regis-

tered devices (e.g., the ECG) should be equipped with a proper interface for1075

communications within the IoT platform. Such an additional module may con-

sist of a small hardware component to be integrated into the nodes, or in a piece

of software or an app for mobile devices. Therefore, the costs of deployment

among medical equipment of such network interfaces and/or the development of

mobile apps must be taken into account. In fact, the involved users, including1080

doctors, nurses, patients, and visitors, must download the smart health app in

order to access the services provided by the IoT platform and manage their

profiles. Note that communication will take place, for example, by means of

wired cables, Wi-Fi, 4G, or Bluetooth.

The enforcement framework acts as a wrapper, able to filter all the interac-1085

tions among such entities, and is fully installed on the IoT platform. It is worth

48

noting that the aforementioned interfaces are indeed exposed by the enforcement

framework (i.e., the PEP detailed in Section 3), because all the communications

among the IoT platform and nodes/users must be controlled.

6.3. Bandwidth requirements1090

Among all the procedures described in Section 5, data transmission and

service provisioning are those that mainly influence the bandwidth consumption.

Nodes/users registration and access control are handled with a low frequency

with respect to the other tasks.

To investigate bandwidth requirements, a scenario composed by a number1095

of registered nodes and users is taken into account. Let λN and λU be the

data generation rate and the request generation rate handled by the system,

respectively. Moreover, SData represents the size of the data generated within

the platform. The conducted study aims at estimating the upper bound of the

aggregate data rate that IoTPlatform must handle in different load conditions.1100

To this end, the following parameters setting was considered: λN ∈ [1 : 1000]

transmission/s, λU ∈ [1 : 1000] request/s, and SData ∈ [10 : 1000] B.

Bandwidth consumption is due to many contribution, that are described

below (some of them were evaluated by using Wireshark and postman tools;

the others are set as input variables):1105

• At the application layer, nodes/users and platforms interact with the Hy-

perText Transfer Protocol over transport layer Security (HTTPS) proto-

col. The establishment of a Transport Layer Security (TLS) connection

requires the exchange of 4365 B (Bytes) of information, as summarized in

Figure 18;1110

• The TCP/IP protocol introduces an overall overhead of 100 B (66 B for

the TCP header with additional flags, 20 B for the IP header, and 14

B for the IEEE 802.3 header). That overhead should be considered for

application messages, TCP Acknowledgment, as well as for the for way

handshake closing the TCP connection;1115

49

Figure 18: Bandwidth consumption due to the initialization of a TLS connection

• Data are transmitted to the URI

https://[ip address of the platform]/datatransmission,

through a HTTP POST. By assuming 10 B for session, identifier, and

datatype fields (Listing 8 in Appendix A), the XML message has a size

equal to (160+SData) B. The encrypted HTTP payload, instead, registers

a size of (454 + SData) B.

• Service requests are set to the URI

https://[ip address of the platform]/servicerequest,

through a HTTP POST. By assuming 10 B for session, username, identi-1120

fier, function, and service fields (see Listing 19 in Appendix A), the XML

message has a size equal to 177 B. The encrypted payload registers a size

of 469 B.

50

• service requests are set to the URI

https://[ip address of the user]/serviceprovisioning,

through a HTTP POST. By assuming the transmission of only one data

for each request, the XML message has a size equal to (36 + SData) B.1125

The encrypted payload, instead, registers a size of (333 + SData) B.

Results are reported in Figures 6.3-6.3. As expected, bandwidth require-

ments increase with the amout of data transmissions and service requests gen-

erated in the unit of time. At the same time, it is little influenced by the size of

the data. SData provides a limited contribution to the entire overhead, if com-1130

pared with respect to HTTPS and TCP/IP protocols. In any case, it emerges

that the overall communication overhead does not exceed 150 Mbps. There-

fore, it is possible to conclude that the proposed approach is feasible also in

large-scale environments.

Figure 19: Bandwidth requirements, SData = 10 B

7. Conclusions and future works1135

Security threats risk to refrain the development of smart health applica-

tions in large scale heterogeneous scenarios. To this end, a flexible security

51

Figure 20: Bandwidth requirements, SData = 100 B

enforcement framework has been proposed in this manuscript along with a pol-

icy definition language, based on XML formalism. The proposed framework is

able to provide policy enforcement primitives suitable across different adminis-1140

trative domains in general, or specifically related to healthcare infrastructures.

Its effectiveness has been demonstrated through a running example in a con-

crete use case, tailored to a smart health application. As regards other future

works, we will focus on the deployment of the framework in an ad-hoc prototype

in order to test its real robustness in a smart health distributed environment.1145

Moreover, proper mechanisms for enabling policies’ combination and conflicts’

resolution will be investigated, taking into account that multiple policy adminis-

trators may belong to the IoT application area, as well as different smart health

environments may coexist (e.g., hospitals, clinics, pharmacies) and require con-

flicting policies on data. In this case, the actual centralized approach should1150

be overcome in order to consider a distributed policy management and handle

proper mechanisms for policy propagation and synchronization.

52

Figure 21: Bandwidth requirements, SData = 1000 B

References

[1] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Comput.

Netw. 54 (15) (2010) 2787–2805.1155

[2] D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac, Survey internet of

things: Vision, applications and research challenges, Ad Hoc Netw. 10 (7)

(2012) 1497–1516.

[3] M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. Grieco, G. Bog-

gia, M. Dohler, Standardized protocol stack for the internet of (important)1160

things, Communications Surveys Tutorials, IEEE 15 (3) (2013) 1389–1406.

[4] B. Emmerson, M2M: the Internet of 50 billion devices, Huawei Win-Win

Magazine Journal (4) (2010) 19–22.

[5] D. Boswarthick, O. Elloumi, O. Hersent, M2M Communications: A Sys-

tems Approach, 1st Edition, Wiley Publishing, 2012.1165

[6] O. Hersent, D. Boswarthick, O. Elloumi, The Internet of Things: Key

Applications and Protocols, 2nd Edition, Wiley Publishing, 2012.

53

[7] L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono, M. L.

Stefanizzi, L. Tarricone, An iot-aware architecture for smart healthcare

systems, IEEE Internet of Things Journal 2 (6) (2015) 515–526.1170

[8] P. A. Laplante, N. Laplante, The internet of things in healthcare: Potential

applications and challenges, IT Professional 18 (3) (2016) 2–4.

[9] B. Xu, L. D. Xu, H. Cai, C. Xie, J. Hu, F. Bu, Ubiquitous data accessing

method in iot-based information system for emergency medical services,

IEEE Transactions on Industrial Informatics 10 (2) (2014) 1578–1586.1175

[10] Y. YIN, Y. Zeng, X. Chen, Y. Fan, The internet of things in healthcare:

An overview, Journal of Industrial Information Integration 1 (2016) 3 – 13.

[11] K. Ullah, M. A. Shah, S. Zhang, Effective ways to use Internet of Things in

the field of medical and smart health care, in: Proc. of IEEE International

Conference on Intelligent Systems Engineering (ICISE), 2016, pp. 372–379.1180

[12] D. Altolini, V. Lakkundi, N. Bui, C. Tapparello, M. Rossi, Low power link

layer security for IoT: Implementation and performance analysis, in: Proc.

of Int. Wireless Communications and Mobile Computing Conf. (IWCMC),

2013, pp. 919–925.

[13] S. Bandyopadhyay, M. Sengupta, S. Maiti, S. Dutta, A survey of middle-1185

ware for internet of things, in: Third International Conferences, WiMo

2011 and CoNeCo 2011, Ankara, Turkey, 2011, pp. 288–296.

[14] M. A. Chaqfeh, N. Mohamed, Challenges in middleware solutions for the

internet of things, in: 2012 International Conference on Collaboration Tech-

nologies and Systems (CTS), Denver, CO, 2012, pp. 21–26.1190

[15] Q. M. Ashraf, M. H. Habaebi, Autonomic schemes for threat mitigation in

internet of things, Journal of Network and Computer Applications 49 (0)

(2015) 112 – 127.

54

[16] S. Babar, A. Stango, N. Prasad, J. Sen, R. Prasad, Proposed embedded

security framework for internet of things (iot), in: 2011 2nd International1195

Conference on Wireless Communication, Vehicular Technology, Informa-

tion Theory and Aerospace and Electronic Systems Technology, Wireless

VITAE 2011, Chennai, India, 2011, pp. 1 – 5.

[17] R. H. Weber, Internet of things - new security and privacy challenges,

Computer Law & Security Review 26 (1) (2010) 23–30.1200

[18] R. Roman, J. Zhou, J. Lopez, On the features and challenges of security

and privacy in distributed internet of things, Computer Networks 57 (10)

(2013) 2266–2279.

[19] Z. Yan, P. Zhang, A. V. Vasilakos, A survey on trust management for

internet of things, Journal of Network and Computer Applications 42 (0)1205

(2014) 120 – 134.

[20] U. Premarathne, A. Abuadbba, A. Alabdulatif, I. Khalil, Z. Tari,

A. Zomaya, R. Buyya, Hybrid cryptographic access control for cloud-based

ehr systems, IEEE Cloud Computing 3 (4) (2016) 58–64.

[21] M. F. F. Khan, K. Sakamura, Fine-grained access control to medical records1210

in digital healthcare enterprises, in: Proc. of International Symposium on

Networks, Computers and Communications (ISNCC), 2015, pp. 1–6.

[22] M. Barua, X. Liang, R. Lu, X. Shen, Peace: An efficient and secure patient-

centric access control scheme for ehealth care system, in: Proc. of IEEE

Conference on Computer Communications Workshops (INFOCOM WK-1215

SHPS), 2011, pp. 970–975.

[23] H. S. G. Pussewalage, V. A. Oleshchuk, An attribute based access control

scheme for secure sharing of electronic health records, in: Proc. of IEEE In-

ternational Conference on e-Health Networking, Applications and Services

(Healthcom), 2016, pp. 1–6. doi:10.1109/HealthCom.2016.7749516.1220

55

http://dx.doi.org/10.1109/HealthCom.2016.7749516

[24] A. Coen Porisini, P. Colombo, S. Sicari, Privacy aware systems: from mod-

els to patterns, igi global Edition, 2011.

[25] D. Barbagallo, C. Cappiello, A.Coen-Porisini, P. Colombo, M. Comerio,

F. D. Paoli, C. Francalanci, S. Sicari, Towards the definition of a framework

for service development in the agrofood domain: A conceptual model, in:1225

WEBIST 2012, Porto, Portugal, 2012.

[26] S. Sicari, A. Rizzardi, L. A. Grieco, A. Coen-Porisini, Security, privacy and

trust in internet of things: The road ahead, Computer Networks 76 (2015)

146–164.

[27] S. Sicari, S. Hailes, D. Turgut, S. Sharaffedine, D. U., Security, Privacy and1230

Trust Management in the Internet of Things era- SePriT, 11th Edition,

Special Issue of Ad Hoc networks, Elsevier, 2013.

[28] R. Neisse, G. Steri, G. Baldini, Enforcement of security policy rules for the

internet of things, in: Proc. of IEEE WiMob, Larnaca, Cyprus, 2014, pp.

120–127.1235

[29] S. Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, A. Coen-Porisini, Security

policy enforcement for networked smart objects, Computer Networks 108

(2016) 133–147.

[30] A. A. A. El-Aziz, A. Kannan, Access control for healthcare data using ex-

tended xacml-srbac model, in: Proc. of International Conference on Com-1240

puter Communication and Informatics, 2012, pp. 1–4.

[31] M. Anwar, A. Imran, Access control for multi-tenancy in cloud-based health

information systems, in: Proc. of IEEE International Conference on Cyber

Security and Cloud Computing, 2015, pp. 104–110.

[32] Z. Wu, L. Wang, An innovative simulation environment for cross-domain1245

policy enforcement, Simulation Modelling Practice and Theory 19 (7)

(2011) 1558–1583.

56

[33] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, K. S. Kwak, The

internet of things for health care: A comprehensive survey, IEEE Access 3

(2015) 678–708. doi:10.1109/ACCESS.2015.2437951.1250

[34] M. Dell’Amico, M. S. I. G. Serme, A. S. de Oliveira, Y. Roudier, Hipolds: A

hierarchical security policy language for distributed systems, Information

Security Technical Report 17 (3) (2013) 81–92.

[35] D. Ferraiolo, V. A. ans S. Gavrila, The policy machine: A novel architec-

ture and framework for access control policy specification and enforcement,1255

Journal of Systems Architecture 57 (4) (2011) 412–424.

[36] J. Rao, A. Sardinha, N. Sadeh, A meta-control architecture for orches-

trating policy enforcement across heterogeneous information sources, Web

Semantics: Science, Services and Agents on the World Wide Web 7 (1)

(2009) 40 – 56.1260

[37] J. Rao, A. Sardinha, N. Sadeh, A meta-control architecture for orches-

trating policy enforcement across heterogeneous information sources, Web

Semantics: Science, Services and Agents on the World Wide Web 7 (1)

(2009) 40–56.

[38] S. Sicari, A. Rizzardi, A. Coen-Porisini, L. A. Grieco, T. Monteil, Secure1265

om2m service platform, in: Autonomic Computing (ICAC), 2015 IEEE

International Conference on, 2015, pp. 313–318.

[39] N. Ulltveit-Moe, V. Oleshchuk, Decision-cache based XACML authorisa-

tion and anonymisation for XML documents, Computer Standards & In-

terfaces 34 (6) (2012) 527 – 534.1270

[40] V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption for

fine-grained access control of encrypted data, in: Proceedings of the 13th

ACM Conference on Computer and Communications Security, 2006, pp.

89–98.

57

http://dx.doi.org/10.1109/ACCESS.2015.2437951

[41] S. Sicari, A. Rizzardi, A. Coen-Porisini, C. Cappiello, A NFP model for in-1275

ternet of things applications, in: Wireless and Mobile Computing, Network-

ing and Communications (WiMob), 2014 IEEE 10th International Confer-

ence on, IEEE, Larnaca, Cyprus, 2014, pp. 265–272.

[42] Q. Ni, A. Trombetta, E. Bertino, J. Lobo, Privacy-aware role based access

control, in: Proceedings of the 12th ACM Symposium on Access Control1280

Models and Technologies, ACM, New York, USA, 2007.

[43] S. Sicari, L. A. Grieco, G. Boggia, A. Coen-Porsini, Dydap: A dynamic data

aggregation scheme for privacy aware wireless sensor networks, Elsevier

Journal of Systems and Software 88 (1) (2012) 152–166.

[44] S. Sicari, L. Grieco, A. Rizzardi, G. Boggia, A. Coen-Porisini, SETA: A1285

secure sharing of tasks in clustered wireless sensor networks, in: 9th IEEE

International Conference on Wireless and Mobile Computing, Networking

and Communications, WiMob 2013, Lyon, France, 2013, pp. 239–246.

[45] S. Sicari, A. Coen-Porisini, R. Riggio, Dare: evaluating data accuracy using

node reputation, Elsevier Computer Networks 57 (15) (2013) 3098–3111.1290

[46] S. Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, A. Coen-Porisini, A secure

and quality-aware prototypical architecture for the I nternet of Things,

Information Systems 58 (2016) 43–55.

Appendix A. XML representations

This appendix collects all the XML listings related to the transactions pre-1295

sented in Section 5. In the XML codes presented in this work, the tag <input>

identifies the information obtained, while the tags<security> and<verification>

highlight the performed security tasks.

ECG registration.

1 <ac t i on type==’ r e g i s t r a t i o n ’>1300

2 <input>

58

3 <node>

4 <source>ecg</ source>

5 <communicationmode>e the rne t</communicationmode>

6 <datatype> i n t e g e r</ datatype>1305

7 <encryptionscheme>RSA</ encryptionscheme>

8 <s i gnaturekey>NodeSignatureKey . pub l i c</ s i gnaturekey>

9 </node>

10 </ input>

11 </ ac t i on>1310

Listing 1: ECG registration

ECG registration response.

1 <ac t i on type==’ node r e g i s t r a t i o n response ’>

2 <node>

3 <s e s s i o n>encrypt (33333 , IoTPlatformSignatureKey . p r i v a t e)</

s e s s i o n>1315

4 < i d e n t i f i e r>encrypt (id003 , IoTPlatformSignatureKey . p r i v a t e)</

i d e n t i f i e r>

5 <s i gnaturekey>IoTPlatformSignatureKey . pub l i c</ s i gnaturekey>

6 <act ionkey>∗∗∗∗∗</ act ionkey>

7 </node>1320

8 </ ac t i on>

Listing 2: ECG registration response provided by IoTPlatform

ECG access control.

1 <ac t i on type=’ a c c e s s c o n t r o l ’>

2 <input>

3 <node>1325

4 < i d e n t i f i e r>id003 , encrypt (id003 , NodeSignatureKey . p r i v a t e)</

i d e n t i f i e r>

5 <s i gnaturekey>NodeSignatureKey . p r i v a t e</ s i gnaturekey>

6 </node>

7 </ input>1330

8 <s e c u r i t y>

9 <v e r i f i c a t i o n>

10 < i f r e g i s t r a t i o n=’ r e g i s t e r e d==’ yes ’ ’>

11 <s i gnaturekey>NodeSignatureKey . pub l i c</ s i gnaturekey>

59

12 < i d e n t i f i e r>decrypt (id003 , NodeSignatureKey . pub l i c)</1335

i d e n t i f i e r>

13 <e l s e />

14 <s i gnaturekey>undef ined</ s i gnaturekey>

15 < i d e n t i f i e r>id003</ i d e n t i f i e r>

16 </ i f>1340

17 </ v e r i f i c a t i o n>

18 </ s e c u r i t y>

19 </ ac t i on>

Listing 3: ECG access control

ECG access control response.

1 <ac t i on type=’ a c c e s s c o n t r o l r e sponse ’>1345

2 <node>

3 <s e s s i o n>33333 , encrypt (33333 , IoTPlatformSignatureKey .

p r i v a t e)</ s e s s i o n>

4 < i f r e g i s t r a t i o n=’ r e g i s t e r e d==’ yes ’ ’>

5 <a c c e s s>yes</ a c c e s s>1350

6 < e l s e i f r e g i s t r a t i o n=’ r e g i s t e r e d==’ no ’ ’>

7 <a c c e s s>yes</ a c c e s s>

8 <e l s e>

9 < i d e n t i f i e r>id003</ i d e n t i f i e r>

10 </ i f>1355

11 </node>

12 </ ac t i on>

Listing 4: ECG access control response

Cardio bracelet access control.

1 <ac t i on type=’ a c c e s s c o n t r o l ’>

2 <input>1360

3 <node>

4 < i d e n t i f i e r>id004</ i d e n t i f i e r>

5 </node>

6 </ input>

7 <s e c u r i t y>1365

8 <v e r i f i c a t i o n>

9 < i f r e g i s t r a t i o n=’ r e g i s t e r e d==’ yes ’ ’>

10 <s i gnaturekey>NodeSignatureKey . pub l i c</ s i gnaturekey>

60

11 < i d e n t i f i e r>decrypt (id004 , NodeSignatureKey . pub l i c)</

i d e n t i f i e r>1370

12 <e l s e />

13 <s i gnaturekey>undef ined</ s i gnaturekey>

14 < i d e n t i f i e r>id004</ i d e n t i f i e r>

15 </ i f>

16 </ v e r i f i c a t i o n>1375

17 </ s e c u r i t y>

18 </ ac t i on>

Listing 5: Cardio bracelet access control

Cardio bracelet access control response.

1 <ac t i on type=’ a c c e s s c o n t r o l r e sponse ’>

2 <node>1380

3 <s e s s i o n>44444</ s e s s i o n>

4 < i f r e g i s t r a t i o n=’ r e g i s t e r e d==’ yes ’ ’>

5 <a c c e s s>yes</ a c c e s s>

6 < e l s e i f r e g i s t r a t i o n=’ r e g i s t e r e d==’ no ’ ’>

7 <a c c e s s>yes</ a c c e s s>1385

8 <e l s e>

9 < i d e n t i f i e r>id004</ i d e n t i f i e r>

10 </ i f>

11 </node>

12 </ ac t i on>1390

Listing 6: Cardio bracelet response

Node definition.

1 <nodes>

2 <node r e g i s t e r e d=’ yes ’>

3 < i d e n t i f i e r>id003</ i d e n t i f i e r>

4 <source>ecg</ source>1395

5 <communicationmode>e the rne t</communicationmode>

6 <datatype> i n t e g e r</ datatype>

7 <encryptionscheme>RSA</ encryptionscheme>

8 <act ionkey>∗∗∗∗∗</ act ionkey>

9 <s i gnaturekey>NodeSignatureKey . pub l i c</ s i gnaturekey>1400

10 <secur i tymetadata>

11 <c o n f i d e n t i a l i t y>0 .8</ c o n f i d e n t i a l i t y>

61

12 < i n t e g r i t y>0 .8</ i n t e g r i t y>

13 <au then t i c a t i on>0 .6</ authen t i c a t i on>

14 <pr ivacy>0 .4</ pr ivacy>1405

15 </ secur i tymetadata>

16 <qual i tymetadata>

17 <completeness>0 .7</ completeness>

18 <accuracy>0 .8</ accuracy>

19 <t i m e l i n e s s>0 .7</ t i m e l i n e s s>1410

20 <r eputa t i on>0 .6</ reputa t i on >

21 </ qual i tymetadata>

22 </node>

23

24 <node r e g i s t e r e d=’ no ’>1415

25 < i d e n t i f i e r>id004</ i d e n t i f i e r>

26 <source>ca rd i o b r a c e l e t</ source>

27 <datatype>double</ datatype>

28 <encryptionscheme>undef ined</ encryptionscheme>

29 <act ionkey>undef ined</ act ionkey>1420

30 <s i gnaturekey>undef ined</ s i gnaturekey>

31 <secur i tymetadata>

32 <c o n f i d e n t i a l i t y>0 .2</ c o n f i d e n t i a l i t y>

33 < i n t e g r i t y>0 .3</ i n t e g r i t y>

34 <au then t i c a t i on>0</ authen t i c a t i on>1425

35 <pr ivacy>0 .2</ pr ivacy>

36 </ secur i tymetadata>

37 <qual i tymetadata>

38 <completeness>0 .5</ completeness>

39 <accuracy>0 .4</ accuracy>1430

40 <t i m e l i n e s s>0 .8</ t i m e l i n e s s>

41 <source r eputa t i on>0 .4</ source r eputa t i on>

42 </ qual i tymetadata>

43 </node>

44 </ nodes>1435

Listing 7: Node storage within IoTPlatform

For each node, IoTPlatform stores the related information with the tags <

node>. As a consequence, a block <node> is included for all the nodes in the

parent tag <nodes>.

62

In the following listings, the tag <message> identifies the content of the

transmitted packet.1440

ECG data transmission.

1 <ac t i on type==’ t ransmi s s i on ’>

2 <input>

3 <message>

4 <s e s s i o n>33333 , encrypt (33333 , NodeSignatureKey . p r i v a t e)</1445

s e s s i o n>

5 <node>

6 < i d e n t i f i e r>id003 , encrypt (id003 , NodeSignatureKey . p r i v a t e)</

i d e n t i f i e r>

7 </node>1450

8 <data>encrypt (d , act ionkey)</ data>

9 <datatype>encrypt (dt , act ionkey)</ datatype>

10 </message>

11 </ input>

12 </ ac t i on>1455

Listing 8: ECG data transmission

Cardio bracelet data transmission.

1 <ac t i on type==’ t ransmi s s i on ’>

2 <input>

3 <message>

4 <s e s s i o n>44444</ s e s s i o n>1460

5 <node>

6 < i d e n t i f i e r>id004</ i d e n t i f i e r>

7 </node>

8 <data>d </ data>

9 <datatype>dt </ datatype>1465

10 </message>

11 </ input>

12 </ ac t i on>

Listing 9: Cardio bracelet data transmission

ECG data processing.

1 <ac t i on type==’ data p r o c e s s i n g ’>1470

2 <input>

63

3 <message>

4 <s e s s i o n>33333 , encrypt (33333 , NodeSignatureKey . p r i v a t e)</

s e s s i o n>

5 <node>1475

6 < i d e n t i f i e r>id003 , encrypt (id003 , NodeSignatureKey . p r i v a t e)</

i d e n t i f i e r>

7 </node>

8 <data>encrypt (d , act ionkey)</ data>

9 <datatype>encrypt (dt , act ionkey)1480

10 </ datatype>

11 </message>

12 </ input>

13 <data eva lua t i on>

14 < i f cond=’ node . act ionkey != undef ined ’>1485

15 <data>decrypt (d , act ionkey)</ data>

16 <datatype>decrypt (dt , node . act ionkey)

17 </ datatype>

18 <s c o r e assessment><data>d</ data></ s co r e assessment>

19 < e l s e i f cond=’ act ionkey == undef ined ’>1490

20 <s c o r e assessment><data>d</ data></ s co r e assessment>

21 <e l s e />

22 <d i s ca rd />

23 </ i f>

24 </ data eva lua t i on>1495

25 </ ac t i on>

Listing 10: ECG data processing

Cardio bracelet data processing.

1 <ac t i on type==’ data p r o c e s s i n g ’>

2 <input>

3 <message>1500

4 <s e s s i o n>44444</ s e s s i o n>

5 <node>

6 < i d e n t i f i e r>id004 </ i d e n t i f i e r>

7 </node>

8 <data>d </ data>1505

9 <datatype>dt

10 </ datatype>

64

11 </message>

12 </ input>

13 <data eva lua t i on>1510

14 < i f cond=’ node . act ionkey != undef ined ’>

15 <data>decrypt (d , act ionkey)</ data>

16 <datatype>decrypt (dt , node . act ionkey)

17 </ datatype>

18 <s c o r e assessment><data>d</ data></ s co r e assessment>1515

19 < e l s e i f cond=’ act ionkey == undef ined ’>

20 <s c o r e assessment><data>d</ data></ s co r e assessment>

21 <e l s e />

22 <d i s ca rd />

23 </ i f>1520

24 </ data eva lua t i on>

25 </ ac t i on>

Listing 11: Cardio bracelet data processing

Doctor registration.

1 <ac t i on type==’ r e g i s t r a t i o n ’>

2 <input>1525

3 <user>

4 <username>doctor</username>

5 <s i gnaturekey>UserSignatureKey . pub l i c</ s i gnaturekey>

6 <f unc t i on>doctor , c a rd i o l o gy</ func t i on>

7 <consent>yes</ consent>1530

8 </ user>

9 </ input>

10 </ ac t i on>

Listing 12: Doctor registration

Doctor registration response.

1 <ac t i on type==’ r e g i s t r a t i o n response ’>1535

2 <user>

3 <username>doctor</username>

4 < i d e n t i f i e r>id001 , encrypt (id001 , IoTPlatformSignatureKey .

p r i v a t e)</ i d e n t i f i e r>

5 <s e s s i o n>11111 , encrypt (11111 , IoTPlatformSignatureKey .1540

p r i v a t e)</ s e s s i o n>

65

6 <f unc t i on>doctor , c a rd i o l o gy</ func t i on>

7 <a c t i o n s consent=’ yes ’ r e g i s t r a t i o n=’ yes ’

8 p r e f e r e n c e s=’ not s p e c i f i e d ’

9 s e r v i c e r e q u e s t=’ enabled ’>1545

10 </ a c t i o n s>

11 <act ionkey>∗∗∗∗∗</ act ionkey>

12 <s i gnaturekey>IoTPlatformSignatureKey . pub l i c</ s i gnaturekey>

13 </ user>

14 </ ac t i on>1550

Listing 13: Doctor registration response

Doctor profile definition.

1 <use r s>

2 <user>

3 <username>doctor</username>

4 < i d e n t i f i e r>id001</ i d e n t i f i e r>1555

5 <f unc t i on>doctor , c a rd i o l o gy</ func t i on>

6 <medical care>

7 <department>c a rd i o l o gy</department>

8 </ medical care>

9 <c a f e t e r i a s e r v i c e>1560

10 < i n t o l e r a n c e>g luten</ i n t o l e r a n c e>

11 < i n t o l e r a n c e>milk products</ i n t o l e r a n c e>

12 </ c a f e t e r i a s e r v i c e>

13 <act ionkey>∗∗∗∗∗</ act ionkey>

14 <s i gnaturekey>UserSignatureKey . pub l i c</ s i gnaturekey>1565

15 <a c t i o n s consent=’ yes ’ r e g i s t r a t i o n=’ yes ’

16 p r e f e r e n c e s=’ updated ’

17 s e r v i c e r e q u e s t=’ enabled ’>

18 </ a c t i o n s>

19 <p r e f e r e n c e o n s e c u r i t y>1570

20 <c o n f i d e n t i a l i t y order=’ 1 ’>0 .5</ c o n f i d e n t i a l i t y>

21 < i n t e g r i t y order=’ 2 ’>0 .6</ i n t e g r i t y>

22 <pr ivacy order=’ 3 ’>0 .8</ pr ivacy>

23 <au then t i c a t i on order=’ 4 ’>0 .8</ authen t i c a t i on>

24 </ p r e f e r e n c e o n s e c u r i t y>1575

25 <p r e f e r e n c e o n q u a l i t y>

26 <completeness order=’ 1 ’>0 .8</ completeness>

66

27 <t i m e l i n e s s order=’ 2 ’>0 .5</ t i m e l i n e s s>

28 <accuracy order=’ 3 ’>0 .8</ accuracy>

29 <source r eputa t i on order=’ 4 ’>0 .61580

30 </ source r eputa t i on>

31 </ p r e f e r e n c e o n q u a l i t y>

32 </ user>

33 </ us e r s>

Listing 14: Doctor profile definition within IoTPlatform

Note that, for each registered user, IoTPlatform stores the information1585

within the tags <user>. As a consequence, a block <user> is included for

all the registered users in the parent tag <users>.

Visitor registration.

1 <ac t i on type==’ r e g i s t r a t i o n ’>

2 <input>1590

3 <user>

4 <username>v i s i t o r</username>

5 <s i gnaturekey>UserSignatureKey . pub l i c</ s i gnaturekey>

6 <f unc t i on>v i s i t o r</ func t i on>

7 <consent>yes</ consent>1595

8 </ user>

9 </ input>

10 </ ac t i on>

Listing 15: Visitor registration

Visitor registration response.

1 <ac t i on type==’ r e g i s t r a t i o n response ’>1600

2 <user>

3 <username>v i s i t o r</username>

4 < i d e n t i f i e r>id002 , encrypt (id002 , IoTPlatformSignatureKey .

p r i v a t e)</ i d e n t i f i e r>

5 <s e s s i o n>22222 , encrypt (22222 , IoTPlatformSignatureKey .1605

p r i v a t e)</ s e s s i o n>

6 <f unc t i on>v i s i t o r</ func t i on>

7 <a c t i o n s consent=’ yes ’ r e g i s t r a t i o n=’ yes ’

8 p r e f e r e n c e s=’ not s p e c i f i e d ’

9 s e r v i c e r e q u e s t=’ enabled ’>1610

67

10 </ a c t i o n s>

11 <act ionkey>∗∗∗∗∗</ act ionkey>

12 <s i gnaturekey>IoTPlatformSignatureKey . pub l i c</ s i gnaturekey>

13 </ user>

14 </ ac t i on>1615

Listing 16: Visitor registration response

Access control of the doctor.

1 <ac t i on type==’ a c c e s s c o n t r o l ’>

2 <input>

3 <user>

4 <username>doctor</username>1620

5 < i d e n t i f i e r>id001 , encrypt (id001 , UserSignatureKey . p r i v a t e)</

i d e n t i f i e r>

6 <s i gnaturekey>UserSignatureKey . pub l i c</ s i gnaturekey>

7 <f unc t i on>doctor , c a rd i o l o gy</ func t i on>

8 </ user>1625

9 </ input>

10 <s e c u r i t y>

11 <v e r i f i c a t i o n>

12 <s i gnaturekey>UserSignatureKey . pub l i c</ s i gnaturekey>

13 <f unc t i on>doctor , c a rd i o l o gy</ func t i on>1630

14 < i d e n t i f i e r>decrypt (id001 , UserSignatureKey . pub l i c)</

i d e n t i f i e r>

15 </ v e r i f i c a t i o n>

16 </ s e c u r i t y>

17 </ ac t i on>1635

Listing 17: Doctor access control

Access control of the visitor.

1 <ac t i on type==’ a c c e s s c o n t r o l ’>

2 <input>

3 <user>

4 <username>v i s i t o r</username>1640

5 < i d e n t i f i e r>id002 , encrypt (id002 , UserSignatureKey . p r i v a t e)</

i d e n t i f i e r>

6 <s i gnaturekey>UserSignatureKey . pub l i c</ s i gnaturekey>

7 <f unc t i on>v i s i t o r</ func t i on>

68

8 </ user>1645

9 </ input>

10 <s e c u r i t y>

11 <v e r i f i c a t i o n>

12 <s i gnaturekey>UserSignatureKey . pub l i c</ s i gnaturekey>

13 <f unc t i on>v i s i t o r</ func t i on>1650

14 < i d e n t i f i e r>decrypt (id002 , UserSignatureKey . pub l i c)</

i d e n t i f i e r>

15 </ v e r i f i c a t i o n>

16 </ s e c u r i t y>

17 </ ac t i on>1655

Listing 18: Visitor access control

Doctor’s service request.

1 <ac t i on type==’ s e r v i c e r eque s t ’>

2 <input>

3 <message>

4 <s e s s i o n>11111 , encrypt (11111 , UserSignatureKey . p r i v a t e)</1660

s e s s i o n>

5 <user><username>doctor</username>

6 < i d e n t i f i e r>id001 , encrypt (id001 , UserSignatureKey . p r i v a t e)</

i d e n t i f i e r>

7 <f unc t i on>doctor , c a rd i o l o gy</ func t i on></ user>1665

8 <s e r v i c e>encrypt (Card io logyAler t s , ac t ionkey)</ s e r v i c e>

9 </message>

10 </ input>

11 </ ac t i on>

Listing 19: Doctor’s request for medical care service

Note that the tag <discard> indicates a discarded request, while the tag <1670

result> includes the information disclosed to the user during the service provision

(an empty <result> tag means that no data can be transmitted).

Doctor’s service provision.

1 <ac t i on type==’ s e r v i c e p r o v i s i o n ’>

2 <input>1675

3 <message>

69

4 <s e s s i o n>11111 , encrypt (11111 , UserSignatureKey . p r i v a t e)</

s e s s i o n>

5 <user><username>doctor</username>

6 < i d e n t i f i e r>encrypt (id001 , UserSignatureKey . p r i v a t e)</1680

i d e n t i f i e r>

7 <f unc t i on>doctor , c a rd i o l o gy</ func t i on></ user>

8 <s e r v i c e>encrypt (Card io logyAler t s , ac t ionkey)</ s e r v i c e>

9 </message>

10 </ input>1685

11 <s e c u r i t y>

12 < i f cond=’ user . f unc t i on != ’ doctor , c a r d i o l og y ’ ’>

13 <d i s ca rd />

14 <e l s e />

15 < s e r v i c e v e r i f i c a t i o n>1690

16 <s e r v i c e>decrypt (Card io logyAler t s , ac t ionkey)</ s e r v i c e>

17 </ s e r v i c e v e r i f i c a t i o n>

18 </ i f>

19 </ s e c u r i t y>

20 <r e s u l t s>1695

21 <d e c l a r e name=’ l i s tOfData ’

22 f unc t i on=’ getData ’ s e r v i c e=’ Card io l ogyAle r t s ’ />

23 <f o r each item=’ data ’ i tems=’ l i s tOfData ’>

24 < i f f unc t i on=’ dataComplianceForUser ’

25 data=’ Card io l ogyAle r t s . data ’ user=’ doctor ’>1700

26 <r e s u l t>data</ r e s u l t>

27 <e l s e />

28 <r e s u l t></ r e s u l t>

29 </ i f>

30 </ r e s u l t s>1705

31 </ ac t i on>

Listing 20: Medical care service provision - doctor

Visitor’s service request.

1 <ac t i on type==’ s e r v i c e r eque s t ’>

2 <input>

3 <message>1710

4 <s e s s i o n>22222 , encrypt (22222 , UserSignatureKey . p r i v a t e)</

s e s s i o n>

70

5 <user><username>v i s i t o r</username>

6 < i d e n t i f i e r>id002 , encrypt (id002 , UserSignatureKey . p r i v a t e)</

i d e n t i f i e r>1715

7 <f unc t i on>v i s i t o r</ func t i on></ user>

8 <s e r v i c e>encrypt (Card io logyAler t s , ac t ionkey)</ s e r v i c e>

9 </message>

10 </ input>

11 </ ac t i on>1720

Listing 21: Visitor’s request for medical care service

Visitor’s service request violation.

1 <ac t i on type==’ s e r v i c e p r o v i s i o n ’>

2 <input>

3 <message>

4 <s e s s i o n>22222 , encrypt (22222 , UserSignatureKey . p r i v a t e)</1725

s e s s i o n>

5 <user><username>v i s i t o r</username>

6 < i d e n t i f i e r>id002 , encrypt (id002 , UserSignatureKey . p r i v a t e)</

i d e n t i f i e r>

7 <f unc t i on>v i s i t o r</ func t i on></ user>1730

8 <s e r v i c e>encrypt (Card io logyAler t s , ac t ionkey)</ s e r v i c e>

9 </message>

10 </ input>

11 <s e c u r i t y>

12 < i f cond=’ user . f unc t i on != ’ doctor , c a r d i o l og y ’ ’>1735

13 <d i s ca rd />

14 <e l s e />

15 < s e r v i c e v e r i f i c a t i o n>

16 <s e r v i c e>decrypt (Card io logyAler t s , ac t ionkey)</ s e r v i c e>

17 </ s e r v i c e v e r i f i c a t i o n>1740

18 </ i f>

19 </ s e c u r i t y>

20 <r e s u l t s>

21 <r e s u l t>Requested data are not a v a i l a b l e f o r a user

r e g i s t e r e d as a v i s i t o r</ r e s u l t>1745

22 </ r e s u l t s>

23 </ ac t i on>

Listing 22: Service request violation

71

	Introduction
	Related Works
	Baseline access control schemes
	Policy enforcement frameworks
	Final considerations

	Policy Enforcement Framework
	Components interaction
	The framework
	Access control model and policy language

	IoT Model
	Node
	User
	IoTPlatform
	Service

	Example Case Study
	Nodes registration
	Nodes access control
	Data management
	Users registration and profiles management
	User access control
	Service provisioning
	Final considerations on security

	Discussion
	Storage requirements
	Software/hardware requirements
	Bandwidth requirements

	Conclusions and future works
	XML representations

