
1

Dynamic Policies in Internet of Things:
Enforcement and Synchronization

Sabrina Sicari, Alessandra Rizzardi, Daniele Miorandi, and Alberto Coen-Porisini

Abstract—Security and privacy represent critical issues for a
wide adoption of IoT technologies both by industries and people
in their every-day life. Besides, the complexity of an IoT system’s
management resides in the presence of heterogeneous devices,
which communicate by means of different protocols and provide
information belonging to various application domains. Hence,
adequate policies must be correctly distributed and applied to
the information made available by the IoT network to secure
the data themselves and to regulate the access to the managed
resources over the whole IoT system. Policies mainly involve
the access to resources and are usually established by system
administrators in accordance with the rules of each specific
domain. Since IoT concerns multiple application fields and often
wide areas, a centralized solution which manages all the required
policies would not be neither efficient nor scalable. Therefore, in
this paper, a distributed middleware overlying the IoT network
is proposed and integrated with a synchronization system for
guaranteeing the correct distribution, update, and application of
the policies across the entire IoT environment in real-time. Such
a distribution and synchronization system has been developed
within a policy enforcement framework. The presented solution
has been validated by means of a simple yet real prototype; the
analyzed metrics regard delay, overhead and robustness of the
proposed enforcement and synchronization framework.

Index Terms—Internet of Things, Security, Policy, Prototype,
Middleware

I. INTRODUCTION

In the last years, information sharing, obtained from differ-
ent sources, is becoming a core requirement of the modern
Internet of Things (IoT) application environments, in which
users are provided with innovative services in real-time. Net-
working systems supporting such a kind of environments must
manage the transmission of data across the boundaries of dif-
ferent application domains, in order to integrate heterogeneous
information to fulfil users and vendors needs. The presented
scenario involves devices interacting with different protocols
over the network, thus emerging the need for the introduction
of a distributed middleware layer able to manage the huge
amount of available data and to cope with interoperability
issues [1]. Also the rules that supervise the access to the
IoT resources must be handled in a compliant manner within
the whole IoT system by the middleware layer, thus requiring
efficient and accurate methods for a correct distribution and
synchronization with respect to the distributed nature of the
environment.

S. Sicari, A. Rizzardi and A. Coen-Porisini are with the Department of The-
oretical and Applied Science, University of Insubria v. G. Mazzini 5 21100,
Varese (Italy), e-mail: sabrina.sicari@uninsubria.it, a.rizzardi@uninsubria.it,
alberto.coenporisini@uninsubria.it.

D. Miorandi is with U-Hopper v. A. da Trento 8/2 38122 Trento (Italy),
e-mail: daniele.miorandi@u-hopper.com.

To this end, the authors proposed, in [2] [3], a flexible
and cross-domain IoT architecture, namely Networked Smart
Objects (NOS) middleware. NOS aims to manage heteroge-
neous sources and evaluate the levels of security and quality
of the information, in order to satisfy users requirements
(e.g., in terms of data reliability or accuracy) and provide a
lightweigth and secure information exchange process [4]. Such
information concur to regulate the access to the resources, but
it is not enough to provide a complete management of the data
processing and sharing [5]. This is mainly due to the fact that
NOSs are distributed over the wide IoT area and administered
by one or more central entities that dictate the actual rules.
As a consequence, such rules must be communicated to all
the NOSs, possibly in real-time, in order to guarantee that the
entire IoT system behaves in the same way all the time.

To cope with such an issue, adequate policies must be
defined, distributed, and sychronized with the final aim of
setting proper rules among the NOSs before releasing IoT
data to users. The aforementioned policies, besides regulating
the access to resources, have another important role, which
consists in dealing with violation attempts. Moreover, due to
the coexistence of hetereougeneous application realms, it is
necessary to pay particular attention to control and regulate
the flow of information from a domain to another, belonging
to the IoT environment. A good solution is represented by the
integration, into the NOS middleware, of a policy enforcement
framework that acts as a sort of wrapper with respect to the
tasks esecuted by NOSs. In this way, all the interactions among
NOSs and the IoT entities (i.e., data sources and users) will be
supervised following specific rules, established by the system’s
administrators. A partial solution to the just presented scenario
is provided in [6], but too little effort has been done yet to
define a comprehensive solution for the IoT data flow control.
In fact, no mechanism has been provided to manage policy
distribution and synchronization.

The definition of how information must be shared is a
complex-prone task and must be treated with a distributed
approach, as NOS does, mainly because of the high number
and the heterogeneity of entities (e.g., devices and users)
and information involved in the IoT scenario. In contrast,
a centralized solution might not be sufficiently scalable [7].
More in detail, the main drawbacks of existing solutions are
the followings: (i) they are not sufficiently flexible and scal-
able, intended as the capability of avoiding bottlenecks in the
information flow; (ii) they do not consider temporary changes
during the activity of the system; (iii) they do not adopt
lightweight schemes for managing the various interactions.

Therefore, new mechanisms must be designed and they
should be flexible enough to support the wide range of



2

technologies acting in the IoT infrastructures and the various
application domains where users and devices could operate. As
regards such a heterogeneity, policies’/rules’ sychronization
across multiple NOSs and hetereougeneous application realms
must be investigated, and this represents the main goal of this
paper. In fact, as just said, it is fundamental for guaranteeing
that the IoT system behave in a compliant manner in all its
parts.

Summarizing, in order to overcome the described issues, we
propose a solution carrying out the following contributions:

• The integration, into the existing enforcement framework
installed on the NOS middleware, of a mechanism for
policies’ distribution and sychronization, which considers
the coexistence of different application realms

• Authorisation and behavioral rules are efficiently speci-
fied, distributed, and synchronized among multiple net-
worked NOSs, in order to determine conditions in which
particular actions are permitted to or must be executed
by the different entities involved (i.e., NOSs themselves,
data sources, users)

• The flow of information and policies within the IoT
environment is properly supervised

• Violation attempts are prevented and blocked.
It is worth to remark that the adopted approach presents an

important contribution, in particular in certain scenarios which
require sychronization for guaranteeing a strict control on data
and on the access to confidential resources, such as healthcare
applications, vehicular and military systems.

The paper is organized as follows. Section II describes our
contributions and motivation with respect to the actual state of
the art. Section III presents the adopted moddleware architec-
ture along with the integrated policy enforcement framework.
Section IV describes our innovative contribution for policies’
distribution and synchronization tailored to a distributed IoT
environment, which is then validated in Section V by means
of a real test-bed. Finally, Section VI ends the paper providing
some hints for future works.

II. RELATED WORKS

The analysis of IoT secure distributed architecture and
related enforcement mechanisms plays a fundamental role in
order to allow the real diffusion and adoption of IoT paradigm.

[8] developed an information security policy process model,
based on a methodology involving qualitative techniques,
able to evaluate the key external and internal influences that
can impact on organizational security against cyber threats.
Such a model uses a data-centred approach, that lead to
identify the primary policy processes, the key environmental
and organization influences, and the relevant linkages among
them. Note that such a process model represents a generalized
framework rather than a specific model for a single company.
Therefore, it does not consider the peculiar aspects of each
organization in a way that the model may not equally apply
to all organizations. Moreover, it does not address exceptional
situations that may warrant a temporary violation of predefined
policies. In our security policy schema, the aim is to go beyond

such limitations by means of a distributed middleware able to
manage the information of heterogeneous application domains
and update the policies in real time in accordance with the
organizational or users’ actual requirements.

Also, the work presented in [9] highlights that security
mechanisms are often enforced in a separated way from each
other (e.g., no interactions or integrations among different
companies or organizations), thus limiting the kinds of poli-
cies that can be enforced in distributed and heterogeneous
settings. To cope with such an issue, [9] introduces the concept
of a Security Service Bus (SSB), representing a dedicated
communication channel between the applications and the
different security mechanisms. It allows the enforcement of
advanced policies by providing uniform access to application-
level information. However, such a security infrastructure is
not enough flexible and scalable for a wide IoT scenario,
since the dedicated channel may become a bottleneck for the
interactions among security services and bounded applications.
To cope with such an issue, in our solution, we employ a pub-
lish&subscribe mechanism to allow the policies propagation
and updates to be decoupled from the involved services.

Two theoretical approaches are presented in [10] and [11],
which address the secure data sharing among different applica-
tions domains. In particular, [10] proposes a knowledge access
control policy language model able to identify the knowledge
access control and sharing rules across enterprises members.
Such a language is based on an ontology, which aims at
solving knowledge heterogeneity issues within companies and
workers belonging to different areas. This is achieved by
establishing relationships among the topics of interest of the
involved parties, thus allowing a timely response to access
authorization request, also in case of changes in the business
environment. Instead, in the IoT and Big Data fields, [11]
proposes the policy-carrying data (PCD) mechanism, with
the aim to establish access control rules for data consumers.
Several drawbacks of such a work are the followings: (i) the
introduction of a complex language for policy definition; (ii)
the need of a centralized entity able to evaluate the behavior of
producers and consumers (which may represent a bottleneck);
(iii) the only theoretical presentation of the proposed solution.

[12] and [13] investigate the secure information sharing in
the healthcare context, since medical data have a sensitive
nature they must be protected and released only to authorized
parties. The solution proposed by the authors involves a
publish&subscribe middleware, which is in charge of handling
the access control policies on the data transmitted by the
healthcare structures by customizing policies depending on
the actual events. The defined policy rules are local to each
administrative domain and proper mechanisms are provided
to assist administrators to maintain a consistent policy set.
However, the data disclosure and policy management are
centralized, thus compromising the scalability of the whole
system. Moreover, automatic updates and revocation of poli-
cies are not considered, as we done in the solution presented
in this paper. Note that our proposed mechanism also includes
the management of independent domains and related policies.

Also, concerning access control in publish&subscribe en-
vironments, other previous works address such an issue



3

by means of: hierarchical role-based rules based on sub-
scribers’ privileges [14]; attribute-level policies concerning
multi-domain environments and involving the use of shared
keys for the interaction with untrusted brokers [15]; policy
integration and distribution along with performance implica-
tions [16]. We aim to extend and overcome such approaches
by proposing a more flexible solution specifically tailored to
the heterogeneous IoT context ([14] and [16] are only general
theoretical approaches), able to manage not only policy over
multiple domains, as [15] does, but also their synchronization
in real time and in an efficient way.

Looking at the available literature, other works focus on the
definition of centralized enforcement frameworks addressing
the orchestration of policy across different domain boundaries,
with no reference to IoT environments. For example, [17]
provides a configurable middle-level component for the policy
mapping process among interconnected systems; [18] presents
an access control framework, named Policy Machine (PM),
to which users may login and access to resources on the
basis of the attributes assigned by the policies themselves;
[19] and [20] enforce context-sensitive policies, which require
the ability to derive the policy to be applied at each time on
the basis of contextual information; [21] uses an intermediary
server to control the access permissions (based on the RBAC
model) to distributed web services; [22] comprises the concept
of federation in order to apply global and local policies to each
member. The last solution is the only targeted to a distributed
environment. Taking in mind the available solutions, our
work is focused on the capability to control the access to
resources in a more efficient and general-purpose way. In
particular, the integration of a lightweight policy distribution
and synchronization schema with the existing NOS distributed
middleware [23] is carried out.

III. NOS MIDDLEWARE ARCHITECTURE

Architectural components for the previous and the new
version of NOS are sketched in Figures 1(a) and 1(b), and
detailed in Sections III-A and III-B, respectively.

A. Previous NOS architectural components

We divide NOS interactions into three main groups, detailed
in the next sections: (i) the southbound interfaces, in charge of
managing the communications with the data sources, which are
also generically referred as nodes (e.g., wireless sensor nodes,
actuator, RFID, NFC, social networks); (ii) the northbound
interfaces, consisting of a publish&subscribe mechanism able
to made processed information available to interested users
or applications, in the form of services; (iii) the enforcement
framework, that acts as a sort of wrapper, responsible for
properly managing the access to the available resources and
handling possible violation attempts, by means of well-defined
policies.

1) NOS southbound interfaces: The southbound NOS inter-
faces have been defined in [4]. They use HTTP as network pro-
tocol and include: (i) the handling of the data transmissions by
different sources; (ii) a service for source registration. In fact,
NOS deals both with registered and non-registered sources.

The registration is not mandatory, but it provides various
advantages in terms of security, since registered sources may
specify an encryption scheme for their interactions with NOS,
thus protecting their communications. The information related
to the registered sources are put in the storage unit, named
Sources. While, for each incoming data, both from registered
and non-registered sources, the following information are
extracted: (i) the data source, which describes the kind of node;
(ii) the communication mode, that is, the way in which the
data are collected (e.g., discrete or streaming communication);
(iii) the data schema, which represents the type (e.g., number,
text) and the format of the received data; (iv) the data itself;
(v) the reception timestamp. Such a behavior towards sources
and incoming data is regulated by the rules established by the
policies.

NOS initially puts the received data in the storage unit,
named Raw Data; then they are periodically elaborated by the
Data Normalization and Analyzers phases, in order to obtain
an uniform representation and add useful metadata. More in
detail, firstly data are pre-processed by the Data Normalization
module, which put them in another storage unit, named
Normalized Data, in the format specified in Figure 2. Then, a
second module, consisting of a set of Analyzers, periodically
extracts the normalized data from the storage unit Normalized
Data and annotated them with a set of metadata (i.e., a
score in the range [0:1]) for each security and data quality
property considered. In particular, as regards the security, four
requirements are evaluated: (i) data confidentiality; (ii) data
integrity; (iii) privacy of the data sources; (iv) robustness of
the authentication/authorization mechanisms adopted by the
data sources. While, concerning data quality requirements, the
following properties are investigated: (i) data accuracy; (ii)
data precision; (iii) information timeliness; (iv) information
completeness.

Note that the rules used for the assessment of such security
and quality levels are dynamically configured at runtime by
system administrators connecting remotely to NOS without
the need to re-start NOS services. These rules are stored in
a proper format in another NOS storage unit, named Config,
and really represent a kind of policy, therefore they are treated
as described in Section IV.

What generally happens is that Analyzers queries the Config
storage unit in order to know which actions they have to
undertake on data. We remark that the assignment of security
and quality scores allows the users or applications, interested
in receiving the data provided by NOS, to filter them according
to personal or business preferences. This makes our approach
extremely flexible and able to adapt to very different appli-
cation scenarios where users may require diverse purposes in
using the IoT information.

As regards the algorithms used for security and data quality
assessment, they are not object of this work, but are deeply
discussed in another work by the authors, to which we refer
for further details [4]. They are also applied under specific
policies and, as a consequence, properly enforced.

2) NOS northbound interfaces: As already presented in [4],
once data are processed by Analyzers, they are ready to be sent
to users/applications via the publish&subscribe system, made



4

(a) (b)

Fig. 1: NOS architecture (a) previous (b) new.

Fig. 2: NOS data format

available by NOS northbound interfaces, which are based on
the well-known MQTT protocol [24], recently standardized
by OASIS foundation. Note that MQTT is a simple and
lightweight protocol with low overhead; such features make
it suitable for constrained environments, as often happens in
IoT application domains.

Users and applications must previously register themselves
to NOS and they are provided with credentials useful for
access the system by means of a proper interface, as specified
in Section V.

Each NOS has a module in charge of assigning the corre-
sponding topics to processed data (module Topic Assignment
in Figure 1). Such an assignment depends on the policies
applied for each specific application domain. In general, topics

consist of one or more level separated by a forward slash
(e.g., the temperature information of a sensor with identifier
sensorId could be represented by the topic sensor/tempera-
ture/sensorId), thus generating a logical information structure,
like in any file system. Then, the MQTT client (Client MQTT
in Figure 1) publishes messages under the specified topics
to an MQTT broker (MQTT Broker in Figure 1). Interested
subscribers (i.e., users or applications) can register for specific
topics at runtime by means of proper requests to NOSs; they
can also dynamically subscribe and/or unsubscribe to the top-
ics themselves during the time. All notifications are mediated
by the broker, which is responsible to dispatch the events
from the publishers to all the interested subscribers, in order
to prevent the publishers (i.e., NOSs) needing to synchronize
with subscribers, thus avoiding a continuous polling.

3) Enforcement Framework: NOS has been integrated with
a basic policy enforcement framework in [6]. It includes: a Pol-
icy Enforcement Point (PEP), which is the point that intercepts
the requests of access to resources from users/applications,
and makes the decision requests to PDP, in order to obtain the
access decision (i.e., approved or rejected); a Policy Decision
Point (PDP), which evaluates the access requests against the
authorization policies, before taking the authorization deci-
sions; a Policy Administration Point (PAP), which contains the
authorization policies established by the system administrators.



5

Note that, in our case, where communication is based on
the MQTT protocol, all requests by users or applications
are handled via the MQTT broker, as sketched in Figure
3. The architecture underlying the enforcement framework
may comprise one ore more NOS and a huge amount of
nodes, which act as data sources, and users, which act as
data consumers (either directly or mediated by other registered
applications). Each NOS includes a PEP, a PDP and a PAP,
while each device has an application representing an interface
between the device itself and NOSs.

Fig. 3: NOS enforcement framework

With this regard, policies should be expressed with a proper
interoperable specification language, able to be flexible enough
to represent the heterogeneous analyzed contexts both in a
general-purpose and in a customizable way. To this end, the
syntax of the policies managed by the enforcement framework
is structured hereby in three main components, representing,
respectively: (i) the input attributes, owned by the entity to
which the policy should be applied and used for evaluating the
policy itself; (ii) the tasks to be executed on the provided inputs
to assess the policy; (iii) the returning values of the policy
assessment, which define whether the request shall be accepted
or not. Once pointed out such a representation, a formalism
for the practical deployment of the established policies have
to be chosen. In this work, as in [6], policies are represented
using JSON format, since it is perfectly compatible for the
integration with the used database management system (i.e.,
MongoDB), specified in Section V.

Concerning policy inputs, we just mentioned the use of
attributes. This is due to the fact that he access control model

considered in this paper, as in [6], is the Attribute Based
Access Control (ABAC) [25]. It concerns the presence of
both the subjects, who want to access or to provide the
resources, and the objects (i.e., data), which represent the
resources, described by means of specific attributes, just used
for policies definition. Attributes can be based on the metadata
fields natively supported in our data representation and control
rules can be defined and dynamically configured according to
the specific needs of the application domains. As previously
introduced, each user/application has to complete a registration
phase before interacting with NOSs; during this phase, a set
of attributes is assigned to each user on the basis of his/her
role in a certain context (e.g., a manager or an employee
of a financial company should have different attributes for
accessing the resources of the company itself). The active
policies will be based on such attributes. In particular, sub-sets
of policies, related to the data of the same company/organi-
zation or disjoint sets of policy of data belonging to different
companies/organizations, are both allowed.

B. New NOS architectural components

With respect to the previous NOS architecture just presented
[6] [4], relevant changes mainly concern the introduction of
the following functionalities and interfaces:

• The definition of new functionalities for an efficient
policies’ management, also considering policies’ changes
during the time. More in detail, new mechanisms are
provided in order to ensure that all NOSs share the
same policies, established on the basis of the involved
application domains, at each time. In fact, in the previous
version of NOS, such an aspect is treated in a trivial
manner: an HTTPS connection is used by an external
administrator to add/update/remove the policies, limiting
the action of the enforcement framework to a single
NOS. Hence, no attention is paid on efficient distribution,
synchronization and compliance among different NOSs.
Instead, such an important functionality is provided in
the new version of NOS middleware, proposed in this
paper, where NOS’ capabilities are expanded in order to
supervise the interactions among a NOS and other NOSs,
or the IoT system’s administrator, or the administrators of
the resources provided by data sources. Hence, the new
extension provides efficient mechanisms for synchroniza-
tion among NOSs regarding the active rules.

• The introduction of new communication northbound in-
terfaces. As emerged in Section III-A2, the problem
of synchronization within the MQTT publish/subscribe
system is solved by the used technology itself, which
is able to handle the notifications in an efficient way.
Instead, with regards to NOSs’ policy configuration, new
interfaces are introduced in the new version, as shown in
Figure 1(b):

– ANOS : northbound interface is used for commu-
nications with the NOSs’ administrator ANOS , via
HTTPS/SSL



6

– Adatan
: northbound interface is used for communica-

tions with the administrators Adatan of the resources,
provided to NOSs by the data sources, via MQTT

– Other NOS: northbound interface is finally used for
commucations with other NOSs. In fact, different
NOSs must be able to securely exchange useful in-
formation about adding/removing/updating the active
policies enforced by the framework installed on each
NOS by means of HTTPS/SSL connection.

Note that, in the previous version of NOS, a simple
HTTP/SSL connection were provided for basic interac-
tions with the administrator. More accurate details will
be provided in Section IV.

IV. NOS POLICY SYNCHRONIZATION

Users and applications adopts the MQTT communication
protocol mediated by a broker in order to obtain data from
NOSs system, as introduced in Section III. In particular, a
user/application logs on a service provided by IoT system itself
(e.g., an application running on user devices - smartphone,
tablet, pc, etc.) and interacts through a proper GUI; as a conse-
quence, a session is opened, during which the user/application
can request for the services provided by NOS on the basis
of the accessible resources. The resources can be accessed
on the basis of the policies defined within NOS enforcement
framework, in the format specified in Section III. Moreover,
the MQTT broker has to interact with the underlying PEP on
NOS in order to establish which subscriptions to accept or
deny, and enforce the current subscriptions themselves.

In NOS system, policies distribution, update and synchro-
nization tasks may be done by runtime configurations through
the Config storage unit, which is in charge of dynamically
update the local PAP of each NOS. As a consequence, each
NOS applies the policies currently specified in Config on the
incoming data and on the user/application requests, via the
MQTT broker (as shown in Figure 3). Hence, it is essential
that all NOSs always share the same set of policies.

Two principal aspects have to be clarified: (i) which kinds
of policies can be defined within NOS system and (ii) which
entities decide how and when such policies have to be applied
on data/requests. Firstly, as regards the set of policies, we
distinguish them into two groups:

• PNOS : policies related to NOS behavior, which includes,
for example, the methods used for assessing the security
and data quality properties (i.e., the behavior of the
Analyzers), the format established for the normalized data
(i.e., the behavior of the Data Normalization phase), the
rate of data processing, etc

• Pdatan
: policies concerning the access to the data them-

selves, which are strictly related to the topics’ assignment
(i.e., which users or applications are allowed to access to
some topics on the basis of their attributes assigned at
NOS registration phase); such policies can be divided
in n groups, where n is the number of organizations
or companies in charge of managing (or that own) the
data provided by the sources. The number n may vary
over the time, since organizations or companies may

join or leave the IoT network (i.e., they can start or
stop to send data to NOSs at every time by means
of their available data sources). It is worth to remark
that the scope of the proposed policy distribution and
synchronization schema is tailored not only to a single
scenario, but aims to be adopted by many companies,
each one requiring customized and shared policies e.g., a
vehicle traffic notification system, a weather service, and
so on. For these reasons we targeted our solution to more
general organizations and we do not refer to user roles
concerning a single application domain.

Therefore, multiple entities are will be associated with
different and independent policies. All of them are conceived
as system administrators, that are mainly supposed to be
independent from each other; for example they may belong
to different companies or organizations. More in detail, we
have:

• ANOS , which represents the administrator of the set of
policies PNOS ; such an administrator is unique and is
responsible for the entire IoT system administration, since
NOS behavior cannot be managed by parties involved in
data provision (e.g., external companies could foster their
business interests)

• Adatan
, which represents the n administrators of the

resources; they define the policies to be applied to filter
the access to the data processed and published by NOSs.
Note that each Adatan

may belong to a diverse company
or organization and is independent in terms of provided
resources and required policies. Also a sort of hierarchy
(e.g., sub-sets of policies) is admitted for the policies
belonging to the same company or organization.

Once made such distinctions among policies and administra-
tors, the main challenge is how to manage in an efficient way
the policies distribution to each NOS. The principal issues to
be faced regard the following aspects: (i) each NOS belonging
to the IoT system has to be synchronized with each other in
order to behave in the same way when treating a given type
of data; (ii) policies may need to be updated over the time due
to the provision of new data to NOSs or to changes within the
companies/organizations resources’ disclosure.

The simplest solution would be the adoption of a central
authority at the head of both ANOS and Adatan , able to
intercept all the requests to add, update or remove policies and,
then, propagate such changes to all NOSs, for example via a
secure HTTPS or SSL channel. However, this may represent
a bottleneck and does not ensure the real synchronization of
all NOSs. In particular, a system of acknowledgments should
be integrated, in order to let the central authority aware of the
correct reception of the changes by all NOSs. Obviously, such
a solution is not suitable for the wide IoT scenario, due to
the huge number of information and policies involved. Note
that the introduction of a central authority would prejudice
the principal function of NOS, which is that of moving the
data processing closer to the data sources without delegating
the activities to a central entity, in charge of collecting and
manage all the information transmitted within the IoT system.

Hence, a totally distributed approach is adopted, which



7

TABLE I: Adopted acronyms

Acronym Meaning
PNOS set of policies about NOS behavior
Pdatan set of policies about the access to data
ANOS administrator of PNOS

Adatan administrators of Pdatan

Cdata MQTT channel for pub/sub to/for users/applications
Ctopic MQTT channel for communications with Adatan

CNOS HTTPS/SSL channel for communications among NOSs and ANOS

exploits the MQTT connection protocol already integrated
into NOS. The scope is to create different virtual channels
in order to separate the management of the sets of policies
PNOS and Pdatan and to allow efficient transmission among
NOSs and administrators. Such a separation is made at the
level of northbound NOS interfaces, presented in Section III.
In particular, looking inside the northbound NOS interfaces,
as depicted in Figure 1, the following virtual channels are
introduced:

• Cdata, which is, in the previous version of NOS [4], the
only MQTT channel used for publishing and notifying the
processed data to interested users/applications; this means
that it is the only channel inherited by the previous NOS
version

• Ctopic, which aims to allow the administrators of the
group Adatan to add/remove/update the policies related
to the information belonging to the topics under their
authority. This channel is based on MQTT as the previous
one (i.e., Cdata)

• CNOS , which forms a sort of private channel among
NOSs themselves and ANOS used for security purposes,
as clarified in the following. In fact, such a channel is
used for checking the policies synchronization and is
based on a secure HTTPS/SSL protocol.

Two aspects have to be remarked: (i) Cdata and Ctopic

overlap on a practical level, since both exploit the existing
publish&subscribe mechanism, but they are separated from a
conceptual point of view, as we will further detail; (ii) all the
interactions are mediated by the broker; in our case we assume
to have one broker to which a various number of networked
NOSs is connected.

Table I summarized the adopted acronyms along with their
meaning. Instead, Figure 4 goes inside the northbound inter-
faces presented in Figure 1 and outlines the proposed schema
including all the involved entities. Blue colour indicates the
communications which happen within the virtual channel
Cdata; in fact the blue uni-directional arrows represent the
route of the information processed by NOSs to their publica-
tion to the MQTT broker towards the final notification to the
end users/applications. The access to such data is regulated by
the policies applied to the topics associated to the information
themselves, which are managed by the enforcement framework
running on each NOS (see Section III-A3).

How the policies are propagated to NOSs is handled by
the Ctopic virtual channel. In detail, all NOSs agree, in a
preliminary phase (i.e., before NOSs deployment), with the
ANOS administrator on a particular topic t (e.g., NOS/pol-
icy); this is used for publishing the policies related to the
adding/removing/updating operations, both by ANOS itself or

Fig. 4: Policy management schema

by the Adatan
administrators. The access to t, which may

be structured in a proper hierarchy in order to obtain full
expressiveness and flexibility, is restricted to NOSs, which are
the only entities notified of such a kind of information and able
to know its content (which is transmitted in an encrypted way,
by means of a proper algorithm agreed by NOSs and ANOS).
Therefore, users and applications are prevented from access
to the policies, despite the same “physical” channel (Cdata

corresponds to Ctopic) is used for the notification of the data
to which they are subscribed. More in detail, in Figure 4, the
orange arrows show the flow of policies propagation, which
consists of the following steps:

1) ANOS for the PNOS policies and Adatan for the Pdatan

policies communicate to one NOS (chosen randomly
at each time or on the basis of information about
NOS locations), via a secure HTTPS/SSL channel, the
existence of a new policy for a certain resource or the
update of an existing one. Note that such administrators
may also expose RESTful services to NOS for policy
transmission

2) NOS stores or updates such a policy in the Config stor-
age unit. As a consequence, the enforcement framework
automatically starts to modify its behavior towards the
involved resource accordingly. Note that this is an impor-
tant feature of the proposed NOS modular architecture,
which allows to save time and computational effort,
since the system is able to be re-configured without re-
starting or modifying the modules themselves

3) NOS has to publish the new policy or the update to the
MQTT broker under the agreed topic t

4) All other NOSs are allowed to access the information
under the topic t and, then, are able to store or update
the policy.

From a practical point of view, all NOSs are subscribed to
the topic t; therefore they are notified at each new incoming
event related to t. In fact, the orange arrows are bi-directional,



8

since a NOS may either publish an information to the MQTT
broker or be notified about a new one. Obviously, such data
are not transmitted in clear over the network, but are ciphered
by means of a proper encryption schema (e.g., RSA, PKI, etc.)
shared by all NOSs and established, for example, before NOS
deployment, as said above. Figure 5 shows the transactions
taking part during such a phase, for the NOS informed of the
adding/removing/updating of a Pdatan policy. The figure also
specifies the activities taking place before the deployment and
the communication channels used.

Summarizing, exploiting the MQTT publish&subscribe pro-
tocol potentialities, NOSs are able to manage and update
the policies of heterogeneous companies or organizations in
a distributed and lightweight way, without the need of a
central coordinator, which may represent a single point of
failure. Moreover, note that no additional modules have been
added to the previous NOS architecture [4], since, in order
to provide the new functionalities just described, the existing
MQTT mechanism has been directly used. Furthermore, such a
mechanism is transparent with respect to the different policies
applied to data belonging to heterogeneous domains.

The last feature to be considered strictly regards the policy
synchronization; in fact, the IoT system, and, in particular,
the ANOS administrator, has to be able to know if all NOSs
share the same policies at a certain interval time. To this end,
the CNOS channel is introduced. Periodically, ANOS selects
a NOS as a leader. This choice can be made by means of one
of the well-known algorithms available in literature for leader
selection [26], which represent a well-investigated subject in
distributed systems. For our work, we consider the case in
which ANOS directly selects the leader (i.e., as a central
server), and we leave the case of NOS self-leader election as
a future extension. Note that we assume that NOSs are trusty.

Going inside the synchronization process, it consists of the
following steps, highlighted in Figure 4 with green arrows:

1) ANOS elects a leader LNOS among the networked NOS
by sending a message mleader only to the selected
NOS via the secure HTTPS/SSL channel, just previously
presented; the leader should change periodically in order
to increase the robustness of the IoT system in case of
link failure

2) When the leader LNOS receives a policy notification,
besides performing the publication to the MQTT broker,
it sends to the other NOSs an advertising message mid

through the secure CNOS channel, where id represents
a progressive identifier chosen by LNOS for identifying
the policy currently under the synchronization process:

{
“NOS” : LNOS ,
“policyId” : id

}

(1)

3) All NOSs has to reply to such an advertise with a sim-
ple acknowledge message rid, using the secure CNOS

channel:
{

“NOS” : NOSid,
“policyId” : id

}

(2)

4) LNOS verifies the reception of rid from all NOSs; if
one or more responses lack, then LNOS sends a report
to ANOS , which could take some countermeasures (e.g.,
do not consider the no-synchronized NOS for leader
selection).

Figure 6 shows the transactions taking part during the
synchronization phase from the perspective of the NOS that
acts as a leader. Figure 6 also specifies the communication
channels used.

Note that some important parameters of the synchronization
process have to be considered and customized depending on
the number of NOS and connected sources and on the data
load. Such parameters include: (i) the rate of leader selection;
(ii) the time waited by the leader for the responses by NOSs.
These fall into the issue of determining the global state of
a system in a certain interval time, which is also a well-
investigated field in distributed environments [27].

Finally, it is important to remark that the proposed schema
is independent from the kind of data managed by NOSs as well
as from the specific application domains. In fact, as confirmed
by the presence of multiple Adatan

, policies related to different
realms may coexist.

V. EXPERIMENTAL EVALUATION

The solution, presented in Section IV, has been imple-
mented in simple, but yet real prototype, whose code is
released as open source under a permissive license1). The
following technologies have been adopted: (i) Node.JS plat-
form2 for NOS development; (ii) MongoDB3 for database
management; (iii) Mosquitto4 for the publish/subscribe mech-
anism. All the modules, including the enforcement framework,
interact among themselves through RESTful services. In such
a way, it is possible to add new modules or update/remove
the existing ones without stopping and re-starting the entire
NOS, since they work in a parallel (non-blocking) manner.
In the remainder of this section, the experimental setup along
with the performance evaluation of the proposed solution are
detailed.

In our test environment, shown in Figure 7, four NOSs run
on Raspberry Pi platforms and receive in real time the data
provided by six sensors at the meteorological station of the city
of Campodenno (Trentino, Italy). The following information
are sent as open data in JSON format: temperature, humidity,
wind, energy consumption, air quality. These are mapped to
proper topics, such as campodenno/sensor1/temperature, cam-
podenno/sensor2/humidity, and so on. Also, a set of policies
is defined accordingly. A laptop is employed to emulate the
behaviour of this set of sources, basically reading data from
the aforementioned feeds and sending them to NOSs as if
they came from six different nodes. The data rate (that is:
how often NOSs queries the data sources to fetch data) is
fixed to 10 and 20 packets per second. Laptop and Raspberries
Pi communicate via a WiFi network. Users can connect to

1https://bitbucket.org/alessandrarizzardi/nos
2http://nodejs.org/
3http://www.mongodb.org/
4http://mosquitto.org



9

Fig. 5: Add/remove/update of a policy: schema

Fig. 6: Policy synchronization: schema



10

Fig. 7: Simulation setup

TABLE II: Test-bed parameters

Parameter Value
Number of data sources 6
Number of NOSs 4
Number of ANOS administrators 1
Number of Adata administrators 1
Data rate 10 and 20 pck/sec
Policy update rate from 1 to 5 policy/min
Observation time 6 h

a public IP address by means of their computers, tablets or
smartphones, in order to interact with the IoT system and
visualize on their browser the gathered data (to which they
are subscribed), through a proper application interface. Our
test-bed also simulates the behavior of a ANOS administrator;
while one Adata1

administrator is considered, since the data
belong to a unique application context. Finally, the rate of
policy update varies in a random range from one 1 to 5
minutes. Table II summarizes the parameters used in the test-
bed, for an observation time of 6 hours.

A. Analysis

The execution time and CPU load, spent for the execution of
the mechanism proposed in Section IV (i.e., policies’ update
and synchronization), have been evaluated by means of a six-
hours running. Figures 8 and 9 show, through the box-whiskers
representation, the mean results obtained from the four NOSs
used for our test-bed. Both Figures 8 and 9 reveal promising
outcomes with respect to the dimension of the test-bed, since
both execution time and computational effort are low and
stable over the time. Note that the results are not affected
in a relevant way by the change in the data rate.

Another interesting metric concerns the update time re-
quired by NOSs to activate/modify a policy. During the
observation time of 6 hours. As stated at the beginning of the
section, the rate of policies’ update is set in the range from 1
to 5 minutes. The box-whiskers representation of Figures 10
reveals that also such results are acceptable in relation to the
test-bed dimension. It also emerges that the time required for
policies’ update is influenced by the arrival time of the data; it
is reasonable because NOSs’ computational resources are also
employed for data processing activities.

Fig. 8: Whiskers-box diagram: execution time (in ms) for two
different traffic configurations, expressed in packets/s

Fig. 9: Whiskers-box diagram: computational load (%) for two
different traffic configurations, expressed in packets/s

Certainly, the presented example is a very simple application
involving four NOSs in a context characterised by the analysis
of real-time data, but it demonstrated the viability of the
proposed schema to meet its requirements (i.e., enforcement
of the defined policies, secure and efficient synchronization
among multiple NOSs) with acceptable performance indices.
As a future development, we aim to test our solution in a
wide IoT context (i.e., more NOSs and data sources), possibly
including different application domains (i.e., more Adatan

ad-
ministrators) and, consequently, more complex policies (e.g.,
hierarchical structures). Only in this way it will be possible to
definitely demonstrate the viability of the proposed approach.

Final considerations regard the robustness of the proposed
solution with respect to violation attempts. In order to clarify
the behavior of the IoT system considered in this paper, we



11

Fig. 10: Whiskers-box diagram: policies’ update time (in ms)
for two different traffic configurations, expressed in packets/s

point out the possible situations that can verify:

• Discovering of the topic t on the Ctopic virtual channel by
an external malicious entity: such information is agreed
among NOSs before deployment, as shown in Figure 5,
therefore they cannot be sniffed or eavesdropped during
network communications

• Discovering of the policy PNOS and Pdatan
updates by

an external malicious entity: they are transmitted to NOSs
via a secure HTTPS/SSL channel and then retransmitted
over the Ctopic virtual channel to notify other NOSs in
an encrypted way. It is worth to remark that credentials
are installed on NOSs before deployment

• Recognition of the NOS leader: the leader election is
done via a secure HTTPS/SSL channel and the leader
periodically changes.

Nevertheless, sophisticated attacks could still make the
system vulnerable from other perspectives (i.e., Denial of
Service attacks, brute force attacks for credentials discovery,
and so on). We are also working on solutions to protect the
IoT system from such a kind of attacks [28].

VI. CONCLUSIONS

In heterogeneous and fully distributed environments, infor-
mation flow must be controlled under well-defined policies,
in order to manage the access to resources, which may be
confidential, and prevent possible violation attempts. In order
to address such an issue, in this paper, a policy distribution
and synchronization schema has been proposed. It is based on
an efficient and lightweight technique for the propagation and
synchronization of policies across different domains, tailored
to an IoT context application. The presented solution has
been integrated within a distributed IoT middleware platform,
named NOS, which uses the MQTT protocol for information
exchange, fitting the needs of flexibility of both large-scale and
constrained environments. The feasibility and the performance

of the proposed approach have been evaluated by means of
a simple yet real prototypical implementation. In particular,
we tested the mean execution time, the CPU load of NOSs,
and the time spent for policies’ update. We also conducted a
brief robustness analysis of the proposed solution. In the next
future, we will focus on the deployment of the middleware
along with the policy management and synchronization mech-
anism in a wider IoT context involving different application
domains, such as building automation, healthcare structures,
and environmental monitoring, in order to test the effective
scalability of the proposed solution.

REFERENCES

[1] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of
the internet of things: Perspectives and challenges,” Wireless Networks,
vol. 20, no. 8, pp. 2481–2501, 2014.

[2] S. Sicari, C. Cappiello, F. D. Pellegrini, D. Miorandi, and A. Coen-
Porisini, “A security-and quality-aware system architecture for internet
of things,” Information Systems Frontiers, pp. 1–13, 2014.

[3] S. Sicari, A. Rizzardi, A. Coen-Porisini, and C. Cappiello, “A NFP
model for internet of things applications,” in Wireless and Mobile
Computing, Networking and Communications (WiMob), 2014 IEEE 10th
International Conference on. Larnaca, Cyprus: IEEE, 2014, pp. 265–
272.

[4] S. Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, and A. Coen-Porisini,
“A secure and quality-aware prototypical architecture for the internet of
things,” Information Systems, vol. 58, pp. 43–55, 2016.

[5] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in internet of things: The road ahead,” Computer
Networks, vol. 76, pp. 146–164, 2015.

[6] S. Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, and A. Coen-Porisini,
“Security policy enforcement for networked smart objects,” Computer
Networks, vol. 108, pp. 133 – 147, 2016.

[7] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges
of security and privacy in distributed internet of things,” Computer
Networks, vol. 57, no. 10, pp. 2266–2279, 2013.

[8] K. J. Knapp, R. F. M. Jr., T. E. Marshall, and T. A. Byrd, “Information
security policy: An organizational-level process model,” Computers &
Security, vol. 28, no. 7, pp. 493 – 508, 2009.

[9] T. Goovaerts, B. D. Win, and W. Joosen, “Infrastructural support for en-
forcing and managing distributed application-level policies,” Electronic
Notes in Theoretical Computer Science, vol. 197, no. 1, pp. 31 – 43,
2008.

[10] T.-Y. Chen, “Knowledge sharing in virtual enterprises via an ontology-
based access control approach,” Computers in Industry, vol. 59, no. 5,
pp. 502–519, 2008.

[11] J. Padget and W. W. Vasconcelos, “Policy-carrying data: A step towards
transparent data sharing,” Procedia Computer Science, vol. 52, pp. 59–
66, 2015.

[12] J. Singh, L. Vargas, J. Bacon, and K. Moody, “Policy-based information
sharing in publish/subscribe middleware,” in Policies for Distributed
Systems and Networks, 2008. POLICY 2008. IEEE Workshop on. IEEE,
2008, pp. 137–144.

[13] J. Singh, D. M. Eyers, and J. Bacon, “Disclosure control in multi-domain
publish/subscribe systems,” in Proceedings of the 5th ACM international
conference on Distributed event-based system. ACM, 2011, pp. 159–
170.

[14] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and
K. Moody, “Role-based access control for publish/subscribe middleware
architectures,” in Proceedings of the 2nd international workshop on
Distributed event-based systems. ACM, 2003, pp. 1–8.

[15] L. I. Pesonen, “A capability-based access control architecture for multi-
domain publish/subscribe systems,” University of Cambridge, Computer
Laboratory, Technical Report, no. UCAM-CL-TR-720, 2008.

[16] A. Wun and H.-A. Jacobsen, “A policy management framework for
content-based publish/subscribe middleware,” in Middleware 2007.
Springer, 2007, pp. 368–388.

[17] Z. Wu and L. Wang, “An innovative simulation environment for cross-
domain policy enforcement,” Simulation Modelling Practice and Theory,
vol. 19, no. 7, pp. 1558–1583, August 2011.



12

[18] D. Ferraiolo and V. A. ans S. Gavrila, “The policy machine: A novel
architecture and framework for access control policy specification and
enforcement,” Journal of Systems Architecture, vol. 57, no. 4, pp. 412–
424, April 2011.

[19] J. Rao, A. Sardinha, and N. Sadeh, “A meta-control architecture
for orchestrating policy enforcement across heterogeneous information
sources,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 7, no. 1, pp. 40 – 56, 2009.

[20] ——, “A meta-control architecture for orchestrating policy enforcement
across heterogeneous information sources,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 7, no. 1, pp. 40–56,
January 2009.

[21] V. Kapsalis, D. Karelis, L. Hadellis, and G. Papadopoulos, “A context-
aware access control framework for e-service provision,” in Industrial
Technology, 2005. ICIT 2005. IEEE International Conference on, Dec
2005, pp. 932–937.

[22] C. Bertolissi and M. Fernndez, “A metamodel of access control for
distributed environments: Applications and properties,” Information and
Computation, vol. 238, pp. 187–207, 2014.

[23] A. Rizzardi, D. Miorandi, S. Sicari, C. Cappiello, and A. Coen-Porisini,
“Networked smart objects: Moving data processing closer to the source,”
in 2nd EAI International Conference on IoT as a Service, Oct 2015.

[24] “Ibm and eurotech, ”mqtt v3.1 protocol specification”,”
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/ mqtt-
v3r1.html.

[25] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security,
2006, pp. 89–98.

[26] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[27] K. M. Chandy and L. Lamport, “Distributed snapshots: determining
global states of distributed systems,” ACM Transactions on Computer
Systems (TOCS), vol. 3, no. 1, pp. 63–75, 1985.

[28] S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini, “Reacting
to denial of service attacks in the internet of things,” Technical Report,
2017.


