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Abstract: This paper describes a risk assessment method
suited for large systems. In essence, the method has been in-
troduced in previous works [5, 8, 9, 10, 27], where its properties
have been analysed. In this paper, we develop and mathemati-
cally justify a variant of it which allows to divide a large system
into overlapping subsystems, each one analysed by an expert.
We will show that, independently from the division strategy,
there is an effective way to combine the experts’ assessments
into a global picture, as far as a few and natural hypotheses on
the metrics are satisfied.
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I. Introduction

Understanding the security behaviour of systems is a funda-
mental piece of knowledge to prevent malicious attacks. In
this respect, risk assessment is a fundamental step to system-
atically analyse the security state of systems. For instance,
risk assessment measures the possible negative impacts of
an undesired event in a given system. The key words in the
previous definition are ‘measures’ and ‘possible’: the word
‘measures’ suggests that an engineering method is needed to
quantitatively evaluate the possible occurrences of an event;
the word ‘possible’ suggests that what has to be measured
is not a specific event but, instead, its ability to occur and,
eventually, the consequences of its occurrence.
There are many ways to perform a risk assessment and many
methods have been proposed: a succinct survey is presented
in Section VIII. Each method has its own peculiarities that
make it more apt to evaluate the risk of a specific class of
threats or more suitable to some class of systems.
Roughly speaking, risk assessment methods can be divided
into two main groups: the empirical methods, usually de-
rived from a formalisation of best practices, and the theoret-
ical ones, justified by a formal model of some sort. In ev-
eryday practice, the first group is preferred since its methods
provide reasonable risk evaluations although on an empirical
basis: usually, the outcomes of the application of these meth-
ods are hard to justify in a scientific sense because they are
based on encoded experience.

On the contrary, the second group justifies its outcomes and
provides an insight on the origin and the nature of the anal-
ysed risk sources: most of the times, these methods start from
the evaluations by some experts and their goal is to com-
bine and refine these initial assessments into an outcome not
strictly depending on the experts’ professional reliability .
We believe that a good risk assessment method should be
both practical and theoretically sound, that is, it should jus-
tify its outcomes by a scientific argument. For these reasons,
we proposed in [5] a risk assessment method that is based
on a strict mathematical model: we have been able to prove
some properties of the method that are considered useful in
practice, like the independence from the metrics and the abil-
ity to combine evaluations from different experts as far as
their metrics are compatible.
More specifically, during the last years we have analysed in
depth the proposed method [27, 5] showing by a theoretical
approach the main properties and the combination of expert
evaluations [8, 9, 10], but now, trying to apply the method
to real, large systems a new problem appears: how to effi-
ciently handle the enormous number of vulnerabilities and
dependencies among them.
In this paper, starting from the risk analysis method and re-
lated properties, we propose a simple but theoretically well
founded solution which allows to apply our method also to
large systems. The proposed approach divides a large sys-
tem under analysis in subsystems which may overlap. So, a
single expert may handle just a single subsystem at time.
We will prove, under suitable hypotheses, which are non-
restrictive in practice, that a risk assessment of the whole sys-
tem can be obtained by combining the assessments on sub-
systems, and that the resulting risk evaluation is unaffected
by the division of the whole system into subparts.
In particular, we discuss three different procedures all lead-
ing to the same result, thus proving the correctness of their
final outcomes. We will show that one of those procedures
is computationally more efficient than the others, while an-
other procedure provides a good balance between efficiency
and extra-information which can be effectively used to better
understand the risk analysis and, thus, to make wise security-
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related decisions.
The paper is organised as follows: Section II introduces the
notion of metric we adopt; Section III describes the risk as-
sessment procedure in general, along with its main proper-
ties. The material in these sections is a summary of our pre-
vious findings [27, 5, 8, 9, 10], while what follows is novel.
In Section IV, we introduce the mathematical machinery
which allows to derive the properties of the risk assessment
method when considering subsystems: it amounts to prove a
minimality result. Section V applies the results to large sys-
tems, describing two obvious procedures one may adopt to
cope with division into subsystems. A third procedure is de-
rived which is reasonably efficient and more suited to provide
a better picture of the risk posture of the system.
In Section VI we will show the behaviour of the previously
defined procedures on a simple but critical example. A dis-
cussion on the consequences of the analysis of the example
is presented in Section VII. A survey of related literature
concludes the paper.

II. Dealing with Metrics

A metric is a set of values, not necessarily numbers, used to
measure an homogeneous class of observables. In the case of
risk analysis, the values in a metric form an ordered set, and
the relations are equality and less-than-or-equal (≤). For-
mally, ≤ is required to be an order relation, i.e., reflexive
(x ≤ x), transitive (x ≤ y and y ≤ z implies x ≤ z) and
anti-symmetric (x ≤ y and y ≤ x implies x = y). The ≤
relation may be partial, that is, not defined for every pair x,
y of values.
The order relation naturally generates a few operations im-
plicitly assumed as given. These operations are the maxi-
mum and the minimum of a subset of values or, in the gen-
eral case of partial or infinite orders, the least upper bound
(lub, for short) and the greatest lower bound (glb).
Defining a metric just as a partially ordered set prevents the
development of risk assessment procedures. In fact, risk is
intended to be the worst outcome of an attack to a system,
thus the need to calculate the lub of a set of values each
one measuring the risk of a single outcome. Also, leveraging
among risk evaluations requires to compute a glb.
But, to ensure that the lub and the glb always exist, the metric
must form a complete lattice1.
Definition II.1 A lattice is a partial order 〈O,≤〉 such that
every pair x, y ∈ O has a lub, denoted as x ∨ y, and a glb,
denoted as x ∧ y.
A lattice is finite if O is a finite set.
Let U ⊆ O be non-empty, then

∨
U and

∧
U are, respec-

tively, the lub and the glb of the elements in U , if they exist.
A lattice is complete if every non-empty subset U ⊆ O has a
lub and a glb.
In practice, we are mainly interested in finite lattices. In fact,
the set of values used in a risk analysis is always finite: if
numbers are used, they have a fixed amount of significant
digits: if probabilities are used, only a few decimal places are
considered; if qualifiers, like ‘easy’ or ‘difficult’, are used,

1The theory of lattices is standard. Our treatment is limited to the def-
initions and the properties of interest in the paper. The interested reader is
referred to [17] for a detailed presentation of the mathematical aspects.

there is a finite and fixed number of them.
Moreover, we are interested in lattices having two special
values, ⊥ and >, denoting the impossibility to break the sys-
tem and the immediate ability to abuse of a completely com-
promised system, respectively. In a metric based on numbers
or probabilities,⊥ denotes the minimal value and> the max-
imal value, while, operating with qualifiers, we assume the
existence of two appropriate values.
Definition II.2 A lattice 〈O,≤〉 is bounded if there are two
elements ⊥ and > such that ⊥ =

∧
O, i.e., every element

is greater than ⊥, and > =
∨
O, i.e., every element is less

than >. In a bounded lattice,
∨
∅ = ⊥ and

∧
∅ = >.

Proposition II.3 A finite lattice is bounded if and only if it
is complete.
Definition II.4 A metric is a finite, bounded lattice.

III. Modelling an attack

The goal of risk assessment is to determine the likelihood
that the identifiable threats of a system will harm, weighting
their occurrence with the damage they may cause. A risk
assessment method is a procedure to define the risk of the
occurrence of one or more threats.
The starting point is to consider a system as a composition of
communicating black-box elements; a link (c1, c2) between
the components c1 and c2 means that c1 may directly influ-
ence c2. Thus, the architecture of the system is modelled by
the graph A = 〈C,L〉 where C is the set of components and
L is the set of links. Moreover, each component or link is as-
sumed to be vulnerable: a vulnerability is a flaw or weakness
in the design, implementation or management of a system or
component that could be used to violate the security policy,
as defined in [26].
The vulnerabilities are organised in a structure showing how
they can be used to perform an attack, thought of as a goal to
achieve. By recursively dividing each goal into sub-goals, a
complex attack can be analysed. The resulting analysis pro-
vides a hierarchical plan to perform the attack. This approach
is the one of attack trees [19, 23], a well-known and widely-
adopted method to describe attacks as goals to threaten a sys-
tem: the attacks are naturally represented in a tree structure,
with the main goal as the root node and the different ways
of achieving it as children. In turn, each internal node rep-
resents an intermediate goal. There are and nodes and or
nodes, each one representing an immediate sub-goal of the
father node: or nodes are alternative ways to achieve the fa-
ther goal; and nodes represent the steps (ordered from left to
right) toward the achievement of the father goal; the leaves
of the tree represent the system vulnerabilities.
Thus, fixed a metric, the simplest risk assessment method
using attack trees is described as follows:

1. The threats to the system under examination are mod-
elled using attack trees and to each vulnerability v is
associated a value ε(v), called exploitability, that mea-
sures the difficulty to abuse of v and to perform a suc-
cessful attack.

2. The risk associated to the threat under examination is
computed by recursively aggregating the exploitabilities
along the attack tree: the exploitability of an or sub-
tree is the lub the exploitabilities of its children, and



the exploitability of an and sub-tree is the glb of the
exploitabilities of its children.

The aggregated exploitability of the root node measures the
feasibility of the attack. Since an attack tree is a finite ob-
ject, the calculation of the aggregated exploitability termi-
nates with the number of tree nodes as a bound to the number
of steps.
The simple method just described assumes no further knowl-
edge on the system than the exploitabilities of the leaves in
the attack tree. This method is perfectly adequate when it
is possible to evaluate each vulnerability in isolation, as if it
does not interfere with the other vulnerabilities. Also, this
method implicitly assumes that the experts trying to assess
the risk of a system agree both on the possible attack strate-
gies and on the evaluation of each vulnerability.

A. Modelling dependencies

In most cases, the vulnerabilities of a system are dependent to
each other, that is, an attacker can use one of them to simplify
the abuse of another one. Thus, there is a relation among
the vulnerabilities that specifies how much easier becomes
to abuse of the v vulnerability, broken every vulnerability in
the set U . This relation is called a dependency between the
ordered pair (U, v) and its weight, denoted2 as ε(v|U), mea-
sures the exploitability of v, given the abuse of U . The value
ε(v|U) is called the conditional exploitability of v given U .
Evidently, when the vulnerabilities are dependent one on the
others, the previously defined simple risk assessment proce-
dure is no more sound since the attack tree may not represent
all the possible attacks allowing to achieve the root goal from
the identified vulnerabilities and following the attack plan.
Given a pair of dependencies (U, u) and (V, v), we say that
(U, u) is stronger than (V, v) if u = v, U ⊆ V and ε(u|U) ≥
ε(v|V ), meaning that it is convenient to abuse of (U, u) than
(V, v) since less components have to be violated or the result
is easier to obtain. It is worth noticing that ε(v) = ε(v|∅).
So, ε(v) must be less than ε(v|V ) for any non-empty V to
make the (V, v) dependency significant.
The dependencies can be organised as an hypergraph D =
〈W,D〉, where W is the set of all vulnerabilities and D is
the set of dependencies. It is safe to assume that, for every
d ∈ D, d is not stronger than any other dependency in D,
since only the strongest dependencies may influence a risk
evaluation3. Thus, the graph D is really an hypergraph, hav-
ing arcs from sets of nodes to a node, but it is not a multi-
graph. Hence, the cardinality of D is bounded by |W |2|W |.
Therefore, the simple risk assessment procedure in Sec-
tion III can be extended to consider dependencies.

1. The threats to the system under examination are mod-
elled using an attack tree, as before.

2. The dependencies among identified vulnerabilities are
introduced considering also contextual, architectural

2The chosen notation, ε(v|U), resembles a conditional probability as
ε(v) resembles a probability. This is done on purpose to help intuition,
although the ε function is not a probability measure.

3This is true because we perform a worst-case analysis; in an average-
case analysis, all the dependencies must be considered.

and topological information. The dependencies are rep-
resented in the dependency graph D = 〈W,D〉. More-
over, an exploitability value ε(u|U) weights each de-
pendency (U, u) ∈ D. The values ε(u|∅) are the ini-
tial exploitability of the vulnerabilities, as in the simple
method.

3. The exploitability of each vulnerability v is calculated
from its dependencies: initially, ε0(v) = ⊥ and then

εi+1(v) = εi(v) ∨
∨
∨
{ε(v|V ) ∧
∧
∧

w∈V εi(w): (V, v) ∈ D}
(1)

whose rationale is to update a value when it is conve-
nient to use the dependency instead of the direct attack
pattern. The function εi is said to be final when for all
j ≥ i, εj = εi.

4. The risk associated to the threat under examination
is computed by recursively aggregating the final ex-
ploitabilities along the attack tree.

It is not immediately evident that there exists an index i such
that εi is final, although it is clear that the metric must be a
complete lattice to apply the method, since the updating rule
applies lubs and glbs on subsets of values.
Proposition III.1 For any initial evaluation ε0, there is an
index i such that εi is final.
proof: See [9]. �

The method just described assumes no further knowledge
on the system than the conditional exploitabilities of depen-
dencies, which are fixed. This method is perfectly adequate
when it is possible to evaluate each vulnerability in relation
to its dependencies and the dependencies do not vary in time.
As in the case of the simple risk assessment procedure, this
method implicitly assumes that the experts trying to assess
the risk on a system agree both on the possible attack strate-
gies and on the evaluation of dependencies, in particular on
vulnerabilities.

IV. Fixed points on metrics

In large systems, the previously remarked implicit assump-
tions are not valid in general. In fact, it is hard to find a
group of experts on the whole system. Usually, experts are
so on limited areas of the system. Thus, it makes sense to
hire experts on different subsystems, and to make them to
work together.
In this section, we want to develop the mathematical counter-
part of this choice, namely when we are allowed to divide the
risk assessment job among experts considering just smaller
subsystems, without affecting the overall evaluation.
In this respect, we need to consider evaluations, i.e., func-
tions from vulnerabilities to a fixed metric, and we need to
develop some results about their mathematical structure. The
aim of these results is to show that our method is minimal
with respect to the structure of evaluations, which is the prop-
erty we need to apply it naturally to large scale systems.
To simplify the treatment, we will assume that dependen-
cies are binary, that is, each dependency (U, v) is such that
U = {u} for some vulnerability u. We write (u, v) instead
of ({u}, v).



Definition IV.1 Let M = 〈M,≤M〉 be a metric and let
f, g:V → M be functions from the set of vulnerabilities to
the metric, then f ≤ g if and only if f(x) ≤M g(x) for each
x ∈ V .
Being ≤M a partial ordering, it follows that ≤ is a partial
ordering, as well. Also, sinceM is a bounded lattice, F =
〈{f : f :V → M},≤〉 is a bounded lattice. Unfolding the
definitions, it follows that

1. (f ∨ g)(x) = f(x) ∨ g(x) for every x ∈ V ;

2. (f ∧ g)(x) = f(x) ∧ g(x) for every x ∈ V ;

3. ⊥(x) = ⊥ and >(x) = > for every x ∈ V .

So F is a metric. But we are mainly interested in another
property of F , namely, being a strict CPO.
Definition IV.2 Given a partial order O = 〈O,≤〉, a se-
quence {ei} with ei ∈ O is said to be monotone if e1 ≤
e2 ≤ . . . ≤ en ≤ . . . The limit of a monotone sequence {ei}
is
∨
{ei} =

∨
i ei, when it exists. Finally, O is said to be a

strict and complete partial order (strict CPO, for short) when
every monotone sequence has a limit and there is a minimal
element in O.
Proposition IV.3 F is a strict CPO.
proof: Being a lattice, F has a minimal element⊥ and it is a
partial order. So, let {ei} be a monotone sequence. But F is
finite sinceM is so, thus {ei} forms a finite set of elements.
Hence, there exists

∨
{ei} in F . �

Knowing that F is a strict CPO allows us to derive properties
about the class of transformations from F to itself when they
preserve limits.
Definition IV.4 Let {ei} be a monotone sequence in F and
let τ :F → F be a transformation. Then, τ is said to be
monotone if, whenever x ≤ y with x, y ∈ F , τ(x) ≤ τ(y).
Also, if τ is monotone, it is said to be continuous when∨
{τ(ei)} = τ(

∨
{ei}).

Theorem IV.5 (Minimal fixed point) If τ ∈ F is a continu-
ous transformation, then there is a minimal µ ∈ F such that
µ = τ(µ).
proof: The proof is standard, see [29], but we prefer to re-
peat it here since we are going to use it.
Consider the sequence {τn(⊥)} where τ0(⊥) = ⊥ and
τn+1(⊥) = τ(τn(⊥)). Since τ is monotone, {τn(⊥)} is a
monotone sequence in F and, since F is a strict CPO, there
is µ =

∨
{τn(⊥)}.

But τ(µ) = τ(
∨
{τn(⊥)}) =

∨
{τn+1(⊥)} = µ, so µ is a

fixed point. Let λ be any other fixed point of τ : by induction
on i ∈ N, it follows that τ i(⊥) ≤ λ for any i, so µ ≤ λ. �

Corollary IV.6 Let f ∈ F and let Sf = {g ∈ F : f ≤ g}.
If τ :F → F is a continuous transformation, then there is a
minimal µ ∈ Sf such that µ = τ(µ).
proof: It is immediate to verify that Sf is a strict CPO, so
the theorem applies. �

Actually, the mathematical machinery developed so far is
needed to analyse the risk assessment method, specifically
the way we propagate dependencies. It turns out that the up-
dating rule can be seen as a continuous transformation.
Definition IV.7 GivenD = 〈V,D〉, a graph of dependencies
in a risk assessment problem, the fibre on v ∈ V (in D) is

F (v) = {(w, v) ∈ D:w ∈ V }. Let f ∈ F , the exploitability
of the fibre on v (in D) with respect to f is

EF (v, f) =
∨

(w,v)∈F (v)

(E(v|w) ∧ f(w)) .

Finally, ξ:F → F is defined by ξ(f)(x) = f(x)∨EF (v, f).
Proposition IV.8 If the metric M is a distributive lattice,
then ξ is a continuous transformation.
proof: Let {ei} be a monotone sequence in F :

ξ(
∨
{ei})(x) =

= (
∨
{ei})(x) ∨

∨
(w,x)∈D(E(x|w) ∧ (

∨
{ei})(w)) =

=
∨
{ei(x)} ∨

∨
(w,x)∈D(E(x|w) ∧

∨
{ei(w)}) ,

since the ∨ operation is pointwise.
So,

ξ(
∨
{ei})(x) =

=
∨
{ei(x)} ∨

∨
(w,x)∈D

∨
{E(x|w) ∧ ei(w)} ,

sinceM is a distributive lattice, i.e., for every a, b, c ∈ M,
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
Hence4,

ξ(
∨
{ei})(x) =

=
∨
{ei(x)} ∨

∨
{
∨

(w,x)∈D(E(x|w) ∧ ei(w))} =
=
∨
{ei(x) ∨

∨
(w,x)∈D(E(x|w) ∧ ei(w))} ,

because ∨ is associative and commutative.
Thus, ξ(

∨
{ei})(x) =

∨
{ξ(ei)(x)} for every x, that is, ξ is

continuous. �

Theorem IV.9 Let M = 〈M,≤M〉 be a metric which is
also distributive. Given E0:V → M , there is a minimal
function E:V →M such that

1. E(v) = E(v) ∨ EF (v,E) for every v ∈ V ;

2. E0 ≤ E.

proof: The first requirement says that E must be a fixed
point of the continuous transformation ξ, but Corollary IV.6
asserts that there is a minimal fixed point E in SE0

for ξ,
meeting both requirements at once. �

Corollary IV.10 The minimal fixed point E in the previous
theorem is the limit of the sequence {Ei} where Ei+1(x) =
Ei(x) ∨

∨
(w,x)∈D(E(x|w) ∧ Ei(w)).

proof: Evident form the proof of Theorem IV.5. �

So, the final exploitability of the vulnerabilities in a risk as-
sessment problem with binary dependencies can be charac-
terised as an iterative formula, or as the minimal function
satisfying the requirements of Theorem IV.9. These descrip-
tions of E are equivalent when the metric is distributive.
It is uncommon to use non-distributive metrics, as every to-
tal order is distributive. Nevertheless, it is easy to decide
whether a metric is distributive.
Theorem IV.11 A lattice is distributive if and only if it does
contain a sublattice isomorphic to a pentagon or a diamond
(see [17]).

4The assumption on having just binary dependencies is fundamental to
perform the next step in the proof. To overcome the difficulties with general
dependencies, we need an additional hypothesis, that, for every W ⊆ V ,∧

w∈W

∨
{ei(w)} =

∨{∧
w∈W ei(w)

}
.



V. Analysing large systems

Suppose to have a large system A = 〈C,L〉 with a huge
number of components and links. To determine the risks it is
exposed to, a natural choice is to hire some security experts,
each one specialised on some aspect of the system. Together,
their knowledge covers the whole system, although none of
them is able, alone, to derive a reliable risk analysis, because
none of them has enough expertise and time to understand
the whole system.
In previous works [8, 9, 10], we have shown how it is pos-
sible to combine evaluations of two or more experts, each
one adopting his own metric. In those works, each expert
provides an evaluation of the risks on the whole system, and
the difficulty lies in comparing exploitabilities expressed in
different metrics, i.e., distinct way of measuring.
In the scenario we are dealing with now, the problem is
different: each expert works on a different system Ai =
〈Ci, Li〉, and, on the basis of our previous works, we can
safely assume that all the experts share the same metric and
the same attack tree. But the whole system A = 〈C,L〉 is
such that C =

⋃
i Ci and L =

⋃
i Li, and our question be-

comes how to combine the evaluations of the experts into
a risk assessment for the whole A system. It is worth re-
marking that the assumption of sharing the same attack tree
is much less committing than it appears at a first sight: since
experts analyse different subsystems and since they have dif-
ferent fields of expertise, it is natural to sum their knowledge
about the possible attacks on the system. As a guideline, one
may think that each main-level goal can be split into a series
of subgoals (becoming an or node), one for each subsystem.
For example, if A is composed by the subsystems A1 and
A2, and we want to analyse the risk of an intrusion, we can
divide this goal into the two subgoals ‘successful intrusion in
A1’ and ‘successful intrusion in A2’.
Moreover, the assumption of sharing the same metric is rea-
sonable because, as shown in [8, 9, 10], if each expert uses
his own metric, we can combine them into a single, system-
wide metric, as far as the experts’ metric are compatible, a
fairly natural requirement.
So, suppose we have n experts, each one analysing the sub-
system Ai = 〈Ci, Li〉; also, let A = 〈C,L〉 be the system
under examination, and C =

⋃
i Ci and L =

⋃
i Li. Notice,

that we don’t assume that the Ai systems are independent: it
may be the case that Ci ∩ Cj 6= ∅ for i and j distinct. Also,
let M be the common, distributive metric.
A necessary step in the risk assessment process is to iden-
tify the vulnerabilities and the dependencies among them (as
in Section V, we assume to have just binary dependencies,
since we need to apply Theorem IV.9). This step must be
performed at the beginning of the process and it produces
two outcomes: the attack tree and the dependency graph. In
a large system, the production of these outcomes is a team
work where experts add the knowledge of their subsystems
with the one of their colleagues.
Then, the experts should assess the exploitabilities associ-
ated with the identified dependencies and vulnerabilities. It
is unlikely that the experts will agree, as some of them can-
not reliably evaluate the risks not directly in their expertise
area. Also personal conflicts, misunderstandings, and differ-
ent attitudes may prevent the definition of a common picture.

In fact, this phase is better conducted by separating the ex-
perts, so that each one can work on his best in the specific
subsystem where his expertise is fully recognised.
In principle, there are two distinct ways to proceed:

• either (procedure L, for local) each expert produces
a complete assessment of the vulnerabilities and de-
pendencies in his subsystem, obtaining their final ex-
ploitabilities using the method of Section III-A,

• or (procedure G, for global) each expert limits himself
to assess the initial exploitabilities of all the vulnerabil-
ities and dependencies in his subsystem.

In both procedures, the correct way to deal with the collected
data is to map the values obtained from the experts in the de-
pendency graph, to calculate the final exploitabilities of the
vulnerabilities in the whole A system, and, then, to assess
the risk using the attack tree, as described in Section II. But
procedure L is more efficient than procedure G, since it par-
allelises part of the work.
To understand the correctness of procedure L, it suffices to
show that it produces the same final result as procedure G.
In fact, procedure G is nothing else than a direct, canonical
application of the risk assessment method described in Sub-
section III-A. The only difference is that we may have more
than one initial exploitability value for each vulnerability or
dependency. In those cases, we just take the worst evaluation,
i.e., the supremum among the values, or, in other words, the
“strongest” evaluation which, as shown in Subsection III-A,
is the only significant one.
We can formalise procedure G as follows: let ei0(v) be the
initial exploitability of the v vulnerability as assessed by
the i expert on the subsystem Ai; similarly we denote by
ei(v|u) the exploitability of the (u, v) dependency as stated
by the i expert in the context of the Ai subsystem. So,
e0(v) =

∨
i e

i
0(v) is the initial exploitability of v in the whole

A system, where ei(v) = ⊥ when v does not lie in Ai; also,
e(v|u) =

∨
i ei(v|u) is the exploitability of the (u, v) depen-

dency in the A system, where ei(v|u) = ⊥ when (u, v) is
not a dependency inAi. Hence, applying the method in Sub-
section III-A on A, starting from e0, we obtain G, the final
exploitability evaluation of the whole system.
Analogously, procedure L operates as follows: with the same
notation as above, each expert i calculates eif , his final ex-
ploitability evaluation on theAi subsystem, starting from ei0.
Now, H , the final exploitability evaluation on the whole A
system starting from h0 =

∨
i e

i
f , where eif (v) = ⊥ when v

is not a vulnerability in Ai, is calculated in the usual way.
Thus, establishing the correctness of procedure L means to
prove that H = G.
Clearly, ei0 ≤ e0 for every i. Let Gi be the final exploitabil-
ity evaluation starting from ei0 in the whole A system, where
each dependency (u, v) has e(v|u) as its exploitability value.
It is immediate to see that eif ≤ Gi for every i, since the
exploitabilities of the dependencies in Ai may be lower than
those in A. Also, Gi ≤ G for every i, since ei0 ≤ e0. Thus,
eif ≤ G for each i, and

∨
iG

i ≤ G by definition of supre-
mum. By Theorem IV.9, G is the minimal fixed point such
that e0 ≤ G and G(v) = G(v) ∨ EF (v,G) for every v ∈ V .
But

∨
i e

i
0 ≤

∨
iG

i because ei0 ≤ Gi for every i. Also,



(∨
iG

i
)
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∨
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∨
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i) =

=
∨

iG
i(v) ∨

∨
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(
e(v|w) ∧

∨
iG

i(w)
)
=

=
∨

iG
i(v) ∨

∨
i

∨
(w,v)∈D

(
e(v|w) ∧Gi(w)

)
=

=
∨

i

(
Gi(v) ∨

∨
(w,v)∈D

(
e(v|w) ∧Gi(w)

))
=

=
∨

iG
i(v) ,

because Gi is a fixed point. So,
∨

iG
i is a fixed point, and

by minimality of G, G ≤
∨

iG
i. But we already proved that∨

iG
i ≤ G, hence G =

∨
iG

i.
Evidently, h0 ≤ G because eif ≤ G for every i. Since ei0 ≤
eif , it holds that ei0 ≤ h0, and we can deduce that G ≤ H .
By Theorem IV.9, we know thatH is the minimal fixed point
such that h0 ≤ H and H(v) = H(v) ∨ EF (v,H) for every
v ∈ V . But h0 ≤ G and G(v) = G(v) ∨EF (v,G), being G
a fixed point. So H ≤ G by minimality, and, thus, G = H ,
proving the correctness of procedure L.
It is interesting to notice how an apparently more efficient
procedure, procedure E, could be devised, as promised in
the Introduction: in fact, forcing each expert to use the
global values for the dependencies, i.e.,

∨
i e

i(v|u) instead
of ei(v|u), and his values for the vulnerabilities, i.e., ei0, his
final evaluation becomes exactly Gi when it is calculated on
the A system. Thus, the global evaluation of exploitabilities
for the whole system can be immediately computed as the
supremum

∨
iG

i, as shown above. In this way, the propaga-
tion of exploitabilities in the dependency graph is completely
parallelised among the experts.
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Figure. 1: The example system

VI. An illustrating example

Suppose to have a system whose dependency graph is the one
in Figure 1, and let Alice, Bob and Cam be three security ex-
perts. The system is divided into three subsystems and each
expert analyses his own subsytem, obtaining an initial eval-
uation on the metric ⊥ = 0, . . . , 9 = >, i.e., on the integer
numbers from 0 to 9 ordered in the natural way. The subsys-
tems and the experts’ evaluations are depicted in Figures 2,

3 and 4. The experts’s initial evaluations are denoted as eA0 ,
eB0 and eC0 , according to the first letter in the name.
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Figure. 2: Alice’s initial evaluation
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Figure. 3: Bob’s initial evaluation

Following procedure G, we calculate e0 = eA0 ∨ eB0 ∨ eC0 ,
getting e0(V1) = 5, e0(V2) = 4, e0(V3) = 2, e0(V4) = 2,
and e0(V5) = 6; analogously, e(V2|V1) = 3, e(V3|V1) = 3,
e(V3|V2) = 6, e(V4|V2) = 5, e(V5, V4) = 5, and e(V3|V5) =
4. So we can compute G, the final exploitability evaluation,
as follows:

V1 V2 V3 V4 V5
e0 5 4 2 2 6
e1 5 4 4 4 6
e2 5 4 4 4 6
G 5 4 4 4 6

(2)

If we apply procedure L, each expert evaluates the final ex-
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Figure. 4: Cam’s initial evaluation

ploitability evaluation on his subsystem:

V1 V2 V3 V4 V5
eA0 5 2 2 0 0
eA1 5 3 3 0 0
eA2 5 3 3 0 0
eAf 5 3 3 0 0

(3)

V1 V2 V3 V4 V5
eB0 0 4 0 2 6
eB1 0 4 0 4 6
eB2 0 4 0 4 6
eBf 0 4 0 4 6

(4)

V1 V2 V3 V4 V5
eC0 0 2 2 0 3
eC1 0 2 3 0 3
eC2 0 2 3 0 3
eCf 0 2 3 0 3

(5)

Then, posing e(u|v) as before and h0 = eAf ∨ eBf ∨ eCf , we
can calculate the final exploitability evaluation for the whole
system:

V1 V2 V3 V4 V5
h0 5 4 3 4 6
h1 5 4 4 4 6
h2 5 4 4 4 6
G 5 4 4 4 6

(6)

As expected, the final result is equal to procedure G’s.
When applying procedure E, each expert calculates the final
exploitability evaluation on the whole system starting from
his initial evaluation, i.e., the method of Subsection III-A is
applied to the graphs in Figures 5, 6 and 7, obtaining:

V1 V2 V3 V4 V5
eA0 5 2 2 0 0
GA

1 5 3 3 2 0
GA

2 5 3 3 3 2
GA

3 5 3 3 3 3
GA

4 5 3 3 3 3
GA 5 3 3 3 3

(7)
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Figure. 5: Alice applying procedure E
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Figure. 6: Bob applying procedure E
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Figure. 7: Cam applying procedure E



V1 V2 V3 V4 V5
eB0 0 4 0 2 6
GB

1 0 4 4 4 6
GB

2 0 4 4 4 6
GB 0 4 4 4 6

(8)

V1 V2 V3 V4 V5
eC0 0 2 2 0 3
GC

1 0 2 3 2 3
GC

2 0 2 3 2 3
GC 0 2 3 2 3

(9)

The final exploitability of the whole system is G = GA ∨
GB ∨GC , that is,

V1 V2 V3 V4 V5
G 5 4 4 4 6

(10)

as expected.
In the example, procedure G requires 3 iteration steps, pro-
cedure L requires 6 steps (3 for the longest evaluation among
eAf , eBf and eCf , plus 3 steps for combining them), and proce-
dure E requires 5 steps (the longest evaluation, i.e., GA).
It is worth noticing how the example shows that procedure
E is more efficient than procedure L, as one would expect,
while procedure G requires less iteration steps than proce-
dure E, which is unexpected. In fact, the example has been
chosen on purpose to illustrate this behaviour.
The longest path without cycles in the system’s dependency
graph, see Figure 1, is V1 → V2 → V4 → V5 → V3, so a
bad value in V1 may take up to 4 steps to propagate to V3, as
it happens during the evaluation of GA. And, of course, one
more step is required to stabilise the evaluation.
So, on the average, we should expect that the evaluations of
the various Gi will take a larger number of iteration steps
than the evaluations of the corresponding eif , since eachGi is
calculated on a larger graph, with a potentially wider longest
path without cycles. Of course, the evaluation of each Gi

has the same order of magnitude as the calculation of G via
procedure G, because the same graph is processed, although
procedure G benefits from the ‘speedup’ given by starting
from fewer ⊥ values in e0.
Thus, we can conclude that on a huge graph, as it is the gen-
eral case of risk assessment on large systems, procedure E
is slightly more efficient than procedure L, because the local
evaluation of eif will be faster than the correspondingGi, but
combining the various eif in the final G has the same com-
plexity as procedure G, so it loses the initial advantage most
of the times.
If a large graph is evaluated following either procedure G
or procedure L, the number of steps needed to reach the fi-
nal evaluation is comparable and close to the length of the
longest path without cycles in the graph. In fact, only a pe-
culiar combination of the shape of the system graph and of
the initial evaluations, as we did in the example, provides a
sensible gap between the length of the computations of the
two procedures. In those cases, procedure G is sligthly bet-
ter, as in the example, because of the ‘speedup’ effect it can
benefit of, having fewer ⊥ values in its starting point.

VII. Effective information versus efficiency

It may be somewhat surprising that procedure G is more ef-
ficient than procedure E: in fact, completely parallelising the
workload of computing the risk of the whole system should
be, by common sense, more efficient than computing the
same result through a strictly sequential procedure. But, as
the example in the previous section has shown, this is not true
and for a good reason, as we suggested in the end.
But, still, we claim that the overall amount of information
that is generated in the computation of procedure E is more
useful than the one provided by procedure G, making pro-
cedure E a better way to perform the risk assessment of a
complex system.
The intermediate results in the computation of a fixed point
following the algorithm in Subsection III-A are not very sig-
nificant: their meaning is the propagation of the initial values
through a chain of dependencies which is long as most as the
iteration step being performed. This piece of information in
progress is rather technical and not immediately useful.
In fact, the useful knowledge is the worst path, i.e., the chain
of dependencies that has increased the exploitability value of
a vulnerability to its final result. This piece of information is
difficult to retrieve in the case of procedure L, which ‘breaks’
the chains when switching from the local subsystems to the
global one, while it is easy in procedures G and E.
But procedure E provides this piece of information in a
cleaner way: not only we are able to know the worst path, but
also to which expert it pertains. For example, if we look at
V4 in the example of the previous section, it is immediate to
see that the final value comes from Bob’s evaluation and that
the worst path is V2 → V4. In fact, in the evaluation (8) we
see where V4 changes its value, and recalculating GB

1 (V4),
we see that it is due to the exploitability of V2 propagated
along the (V2, V4) dependency. Analogously, the same path
can be tracked in the calculation (2), which represents the ap-
plication of procedure G, but it requires a further look at the
subsystems to see that the evaluation comes from Bob.
The worst path is useful to understand where countermea-
sures should be applied: it is useless to apply a countermea-
sure which mitigates the exploitability of the V4 vulnerabil-
ity since the worst path tells us that V2 will still have its bad
influence. It is much more reasonable to mitigate V2, as it
affects also V4. Evidently, the best security expert to ask for
a good countermeasure to V2 is Bob since he evaluated V2 in
such a way that V4 gets a high value.
So, procedure E is more effective than procedure G or L
when worst path analysis has to be performed because it al-
lows to immediately individuate the experts to ask for glob-
ally effective countermeasures.
But there is another way in which procedure E is superior
to procedures G and L. In fact, procedure E allows to de-
cide what is the critical subsystem among the ones the whole
system is divided into. By ‘critical’ we mean the subsystem
which has the widest influence on the whole system, the one
that, potentially, may spread its exploitabilities on the largest
part of the system through the net of dependencies.
Individuating the critical subsystem is important because it
is the subsystem which is convenient to attack in order to
produce the maximal influence on the whole system: a suc-
cessful attack on a critical subsystem makes the whole sys-



tem more vulnerable in a diffuse, general way. So, a critical
subsystem is a natural candidate for strong protection, inde-
pendently from the intrinsic value of its assets.
Also, critical subsystems are responsible for lower-bounding
the risk assessment: their exploitability values influence the
whole system, or a large part of it, so whatever countermea-
sure is applied on the system vulnerabilities, it cannot mit-
igate their exploitabilities beyond the values induced by the
critical subsystem.
It is worth noticing that critical subsystems are especially im-
portant in the case of large and complex systems because they
are exactly the parts not allowing to divide the system in al-
most independent pieces, thus they are the primary source of
the complexity of the risk assessment task.
Evidently, procedure G does not help individuating the crit-
ical subsystems: its rationale is to combine the experts’ ini-
tial evaluations and then to calculate the final exploitability
evaluation; the piece of information about how the system is
divided into subsystem is lost in the very beginning. Also,
procedure L does not help as well, since it operates by calcu-
lating exploitability values inside each subsystem, and only
after they are merged in the whole system, the interaction
among subsystems is taken into account. So, again, when
the final exploitability evaluation of the system is calculated,
the way each single subsystem influences the whole, is lost.
Differently, procedure E calculates exactly what needed: it
operates on the whole system, but each expert only calcu-
lates the spread of his initial evaluation, which is limited to
his subsystem. In the example of the previous section, the
calculation (7) clearly reveals that Alice’s subsystem is crit-
ical: the final evaluation GA has non-minimal values in all
the vulnerabilities, while the initial vector has two ⊥ values
out of five.
In general, a good indication of the presence of a critical sub-
system is the length of the calculation performed on it, like
the computing of GA from eA0 above; in fact, it takes time to
propagate the values in the system along dependencies when
a large number of potentially distant vulnerabilities are influ-
enced, which happens exactly when we deal with a critical
subsystem. In this respect, it is worth comparing the calcula-
tion (7) with (8) and (9).
Hence, ironically, the source of inefficiency of procedure E
with respect to procedure G is what makes it perfectly effec-
tive to individuate critical subsystems!

VIII. Related works

In literature there are many attempts to face the risk assess-
ment problem; some of them define systematic approaches
while others provide more ad-hoc methods to evaluate the
likelihood of (a class of) violations. Even though the ap-
plication of risk evaluation methodologies has been widely
discussed and analysed, see, e.g., [12, 1, 18, 28], among in-
formation security experts there appears to be no agreement
regarding the best or the most appropriate method to assess
the possibility of computer incidents [24].
In particular, it is of interest Baskerville’s description [3] of
the evolution of various ad-hoc methods to measure risk that
sometimes could be combined to improve the accuracy of the
security evaluation.
On the side of systematic approaches, S. Evans et al. [14]

present a system security engineering method to discover
system vulnerabilities and to determine what countermea-
sures are best suited to deal with them: the paradigm of
this work is analysing information systems through an ad-
versary’s eyes.
Differently, [22] provides a probabilistic model that mea-
sures security risks. It is possible to calculate risk starting
from hybrid values of a quantitative and/or qualitative nature.
With respect to the previous works, our approach, starting
from its initial definition in [27], has been based on the struc-
tured evaluation of single vulnerabilities along with their mu-
tual dependencies. In this respect, the results in [14] are sim-
ilar to ours, although they do not propose a formal method
based on mathematical arguments. In fact, the distinctive as-
pect of our work with respect to the discussed ones is the
mathematical formalisation of the risk assessment method to
derive its characterising properties. Also, the use of hybrid
values in [22] resembles our approach to metrics considered
as algebraic structures, even though, we do not map them
down to probabilistic estimates.
There are more formalised approaches in literature, employ-
ing a graph-based representation of systems and their vul-
nerabilities, that provide methods whose properties are, at
least partially, mathematically analysed. Among those ap-
proaches, of prominent interest are those based on attack
graphs [21, 25], where state-transition diagrams are used to
model complex attack patterns. In particular, [21] proposes
the use of attack graphs to automate the step of hardening a
network against a multi-step intrusions. The proposed secu-
rity solution is expressed as an adjustable network configura-
tion rather than a set of countermeasures to possible exploits.
Similarly, [20] divides a system into sub-domains and each
sub-domain could be characterised by vulnerabilities. Ap-
plying probability theory and graph transformations [20]
evaluates the possibility that a insecurity flow exploits some
vulnerability to penetrate into the system. The extreme
consequence of this family of approaches is to use model-
checking techniques to simulate attacks, like in [25].
In this respect, our approach is simpler both in the method
and in its formalisation. Despite its simplicity, our results
are stronger on the mathematical side and some experimen-
tation [4, 6, 7] make evident the practical value of the method
in real-world situations. In fact, we use the attack tree
model [19, 23] to evaluate the security threats combining
them with the dependency graph, a formalisation of a piece
of experts’ knowledge. This combination is part of the sub-
ject of our mathematical analysis, and being a richer structure
than the simple attack trees, we are able to derive stronger
properties for our method [9, 10].
On a rather different comparison line, the software com-
ponent paradigm in software engineering has received a
great deal of interest from both industry and academia since
it allows the reusability of components and a natural ap-
proach to distributed programming. A software component
is independently developed and delivered as an autonomous
unit that can be combined to become part of a lager ap-
plication. Despite its evident benefits, the component in-
terdependence is often ignored or overlooked [11], leading
to incorrect or imprecise models. To avoid this problem,
complete models should be specified taking into account



system interconnections. In agreement with this point of
view [11, 13, 14, 22, 24] present models for assessing secu-
rity risks considering interdependence between components.
Particularly, [11] uses techniques for automating and enhanc-
ing risk assessment studies of technological processes using
qualitative models. A set of fundamental parameters and
primitive functions are defined for the domain from which
the system behaviour is derived, detecting some interesting
interdependencies among components.
Similarly, [13] defines a model based on security policies and
individual risks. The model makes possible to evaluate if the
risk associated to each transaction is acceptable. The evalua-
tion of risk also takes into account context information.
Independently from their application areas, the risk assess-
ment methods have a core weakness: the use of subjective
metrics. In fact, in the scientific community the main crit-
icism to these methods is about the fact that values are as-
signed on the basis of personal knowledge and experience.
In extreme cases, these assessment are regarded as random
values, making the total risk evaluation process to be consid-
ered as a guess.
It is a fact that the evaluation metric behind exploitability
deeply influences the risk evaluation. But, at least in our
treatment, what matters is the structure of the metric rather
than its absolute value.
Generalising, in many field of ICT there is the need to define
an objective metric. In the abstract, a metric is defined as [2]
the instrument to compare and to measure a quantity or a
quality of an observable.
Our treatment of metrics follows the work of N. Fenton, in
particular [15]. In agreement with him, we consider measure-
ment as the process by which values are assigned to attributes
of entities, in our case to the exploitability of a vulnerability.
So, even though there is no widely recognised way to assess
risks and to evaluate the induced damages, there are various
approaches that provide methods by which the risk evalua-
tion becomes more systematic.
In particular, Sharp et al. [24] developed a scheme for prob-
abilistic evaluation of the impact of the security threats and
proposed a risk management system with the goal of assess-
ing the expected damages due to attacks in terms of their
economical costs. Z. Dwaikat et al. [13] defined security
requirements for transactions and provided mechanisms to
measure likelihood of violation of these requirements.
Looking toward risk assessment as a decision support tool,
Fenton [16] proposed the use of Bayesian networks. He dis-
tinguishes between certain and uncertain criteria and points
out the power of Bayesian networks to reason about uncer-
tainty. Differently, our approach toward objective risk assess-
ment is based on the abstraction over values, thus what mat-
ters in our treatment is the structure of the metrics. Hence,
objectivity is gained by considering values in the metric not
as absolute measures of risk, but, instead, as relative eval-
uations. Therefore, in agreement with [11, 14, 16, 22], the
information computed by our model can be used as a deci-
sion support.

IX. Conclusions

In this paper, we introduced a risk assessment procedure
which is suited for analysing large systems.

Namely, a large system is divided into a number of sub-
systems, maybe overlapping, each one examined by an ex-
pert. By collecting and properly organising the knowledge
of the various experts, we have shown that it is possible to
efficiently combine their evaluations into a global risk as-
sessment for the whole system. An effective combination
is possible only under the hypotheses of Section II, which
are structural, i.e., they apply on the metrics employed by the
experts and not to the specific nature of the analysed system.
It is worth remarking that the rather complex mathematical
treatment we used in Subsection IV is needed to justify the
risk assessment procedure when concurrently applied by the
experts, but it is not used to compute the risk evaluations.
Hence, the risk assessment method retains its simple com-
putational pattern which enabled for the application to real
systems, see, e.g., [4, 6, 7].
We defined and analysed three different procedures for as-
sessing the risk in large systems. We proved that one of them,
procedure G, is computationally efficient, but another one,
procedure E, is more interesting since it is reasonably effi-
cient on large systems, but the performed calculations can be
used to extract useful information about the security posture
of the system, hence enriching the risk analysis.
In particular, we have focused on worst chain of dependen-
cies, allowing to individuate the distant nodes that affect a
vulnerability of interest. In this respect, we have shown how
procedure E not only can be used to individuate them, but
also to name the expert who is the best choice for suggesting
a countermeasure.
Also, we defined the notion of ‘critical subsystem’ as the one
affecting the largest part of the system via propagation over
dependencies. In this respect, we have shown that procedure
E, differently from the other two procedures, can individu-
ate the critical subsystems among the division operated on
the whole system without performing other calculations, as
this piece of information can be directly extracted from the
inspection of the computation’s steps.
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