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Abstract—Internet of Things (IoT) is a key pillar in vari-
ous smart-* domains, including smart home, smart building,
intelligent transportation systems, industrial Internet, to name
a few. Its potential in terms of value creation is extraordinary,
according to economic estimates from many market sectors. At
the same time, there are some technical challenges to face, which
could refrain IoT adoption. In this study, the attention is focused
on interoperability and data quality issues from a pragmatic
standpoint. In particular, a real smart building testbed has been
set-up by integrating two different IoT platforms: TLSensing
and NetwOrked Smart Object (NOS). The former has been
developed to enable the quick deployment of a IPv6 over the
TSCH mode of IEEE 802.15.4e (6tisch) IoT network and to
expose the data gathered from sensors through a web interface.
The latter is a middleware that handles heterogeneous data
sources and offers a unifying view to users. The resulting IoT
system is able to: (i) gather data from multiple sources, including
multimedia ones; (ii) expose network resources to user through a
common interface; (iii) enforce security and data quality checks.
The performance of this system has been experimentally analyzed
to demonstrate a satisfactory responsiveness and ability to meet
the aforementioned requirements.

Index Terms—Internet of Things, 802.15.4, Image processing,
middleware

I. INTRODUCTION

The IoT has been conceived for supporting a large popu-
lation of constrained devices in several operative scenarios.
It resulted in a computing paradigm that embraces tracking
devices, embedded chips, and multimedia communications [1],
thus including voice, video, and scalar sensed data. Informa-
tion acquired from the environment in which IoT devices are
located, must be efficiently collected and safely analyzed to
provide meaningful services to users. Data can either be scalar
(e.g., values related to temperature, light, and so on) or mul-
timedia (e.g., video-surveillance applications) ones [1]. As a
consequence, they should be properly treated in order to ensure
reliability. One of the most challenging application fields for
IoT is Smart Building, which leverages modeling [2], monitor-
ing, management, and resource optimization functionalities to
grant effectiveness to a Building Management Systems (BMS)
[3] together with video surveillance and access control [4].
Smart Building scenarios sit on top of a highly heterogeneous
technological background, made of protocols, facilities, and
advanced features, that span from wide range to Low-power

Lossy Network (LLN) [5]. Accordingly, interoperability is a
key issue to properly integrate heterogeneous devices, pro-
tocols, and standards in the Smart Building [6]. Moreover,
data quality is an essential feature to provide meaningful
information to users from sensed data. This work tackles
interoperability and data quality issues from a pragmatic stand-
point by designing, developing, and experimentally testing a
Smart Building system that integrates two main components:
TLSensing [7] and NOS [8]. TLSensing is a development
environment for continuous monitoring of either critical and
non-critical parameters. It relies on the 6tisch technology
[9], which standardizes different mechanisms for allocating
link-layer resources. It efficiently trades off among latency,
bandwidth, and power consumption, while enabling industrial-
grade network performances. The IoT platform, named NOS,
instead, has been conceived as a cross-domain middleware able
to gather, temporarily store, process, and share heterogeneous
kinds of IoT data. The resulting IoT system is able to: (i)
retrieve data from multiple sources, including multimedia
ones; (ii) expose network resources to user through a common
interface; (iii) enforce data quality checks. The performance of
this system has been experimentally analyzed to demonstrate a
satisfactory responsiveness and ability to enforce the required
checks. The reminder of this work is organized as follows:
Section II presents the technological background of IoT ar-
chitecture, including Internet Engineering Task Force (IETF)
protocol stack, operating systems, and hardware platforms.
In Section III the main functional aspects of the envisioned
solution are presented. Section IV describes the experimental
campaign and discusses obtained results. Section V concludes
the work and proposes future works.

II. TECHNOLOGICAL BACKGROUND

This Section describes the details of the defined system ar-
chitecture, mainly composed of two elements: (i) the TLSens-
ing platform; (ii) an IoT middleware layer, named NOS.

A. TLSensing platform

The main platform adopted in this work is TLSensing [7], an
IoT system composed by: (i) IoT devices, continuously gath-
ering environmental data (i.e., temperature, relative humidity,



light, and acceleration) thanks to both sensing and commu-
nication capabilities; (ii) an Operating System implementing
6tisch protocol stack, namely OpenWSN; and (iii) a web server
application collecting the aforementioned data and elaborating
them to provide their availability. TLSensing was originally
developed to as an advanced health management system in
future aerial vehicles [7]. Given the offered capabilities and
the low energy consumption, it can be also used in common
environments, such as houses and public places. The 6tisch
protocol stack includes suitable technologies for low-power
and short-range wireless communication. It is composed by:

o IETF Constrained Application Protocol (CoAP): appli-
cation protocol which easily translates to HyperText
Transfer Protocol (HTTP) for integration with the web. It
natively supports multicast and offers very low overhead
and simplicity for constrained environments [10];

o IETF Routing Protocol for Low-power and Lossy net-
works (RPL): gradient-based routing protocol that can
ease formation and management of multi-hop topologies
based on short-range low-power links. It supports multi-
ple roots and is highly flexible, as it manages topology
based on parametric optimization functions [6];

o IETF IPv6 over Low-Power Wireless Personal Area Net-
works (6LoWPAN): adaptation layer to let Internet Pro-
tocol version 6 (IPv6) datagram to fit the small payload
size (up to 127 bytes in IEEE 802.15.4) by means of
advanced header compression techniques [6];

o IETF 6TiSCH Operation Sublayer (6TOP): adaptation
layer that enables the integration among higher-layers
protocol and the novel IEEE 802.15.4e standard, through
management and data interfaces; it also organizes the
transmission of a [IPv6 packet over a Time Slotted Chan-
nel Hopping (TSCH) protocol [11] [12];
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802.15.4 Medium Access Control (MAC): powerful MAC
layer based on the TSCH protocol, which ensures reliabil-
ity and energy efficiency in challenging wireless Personal
Area Network (PAN) [13];

o IEEE 802.15.4 Physical (PHY): low-power physical layer
based on the Direct Sequence Spread Spectrum (DSSS)
modulation scheme and operating at the 2.4 GHz of the
Industrial, Scientific and Medical (ISM) band [13].

At the time of this writing, TLSensing platform sup-
ports OpenMote' and Telos Rev B2, also known as TelosB,
which are equipped with a first-generation Texas Instruments
MSP430 MicroController Unit (MCU) and an IEEE802.15.4-
compliant CC2420 radio transceiver. It also features tempera-
ture, humidity and light sensors. OpenMote, instead, is based
on the TI CC2538 System on Chip (SoC). It uses an ARM
Cortex-M3 MCU (32-bit, 32 MHz) with 512 kB of Flash
Memory and 32 kB of RAM. Jointly adopting the OpenBase
and the OpenMote, it is possible to sense temperature, hu-
midity, light, and acceleration. TLSensing can easily extend

Thttp://www.openmote.com/
Zhttps://telosbsensors.wordpress.com/

its hardware support to other hardware platform, e.g., Zolertia
VAR

OpenWSN [14] is an open source operating system that
implements the whole 6tisch protocol stack. It is mainly
composed of two parts: (i) the firmware, running on top of
each device; (ii) the software, executed by a dedicated device
acting like a gateway while monitoring network activities.
OpenWSN is used to both setup and monitor a Wireless
Sensors Network (WSN) [15], exploiting the capability of a
special-node, namely the PAN coordinator, acting as a border
router between the IoT domain and the external Local Area
Network (LAN). The coordinator directly interacts with the
software part of OpenWSN to perform software monitoring
operations and controlling data acquisition processes by adopt-
ing a client-server communication paradigm. In particular,
the software acts as a client, periodically generating requests,
sent towards the remote constrained devices. An application
server runs on each mote (i.e., the constrained IoT devices)
in order to: (i) process each requests; (ii) query on-board
sensors; (iii) elaborate answers; (iv) deliver measurement data
back to the coordinator. Messages are encapsulated into CoAP
messages. It is worth noting that the PAN coordinator acts as a
relay between the client and the server. Data retrieved by the
monitoring software finally reach the server application that
will make them available through a web-based/user-friendly
interface.

B. NOS middleware

One of the main goals of the present work is to establish a
communication between TLSensing and a Digicom IP Camera
400 HD*. The camera is able to capture videos and photos in
any light condition; it provides an 10/100 Ethernet or Wi-
Fi connection and supports a lot of protocols. In particular,
Transmission Control Protocol/Internet Protocol (TCP/IP) and
HTTP will be used in this work. It is evident that a direct
communication among such entities is not possible, due to
protocols incompatibilities; for this reason, NOS architecture
has been introduced [8]. NOS is an IoT cross-domain middle-
ware which interacts with multiple IoT-nodes over the HTTP
protocol, analyzes and shares, in the form of services via
Message Queue Telemetry Transport (MQTT), the coming
data providing to the final user a clear, safe and filtered
result. As it is shown in Figure 1 [8], NOS collects data
provided by heterogeneous sources, which can be registered
or not and temporarily stores them in the storage collection,
named Raw Data. After this, NOS system filters the collected
records according to the Analysis and Data Annotation layers,
in order to obtain a uniform representation of the data them-
selves. During this phase, data records belonging to registered
source are managed in a different way than the non-registered
ones; in fact, they are characterized by different security
communication schema, besides dedicated quality levels. As
regards security [16], if the data source is a registered one, the

3http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf
“http://www.digicom.it/digisit/prodotti.nsf/itprodottiidx/IPCamera400HD



information access requires the authentication of the source
and the decryption of the data; then, a score is assigned to the
following parameters: authentication, confidentiality, integrity,
and privacy. For non-registered sources, no information may
be available, therefore they will have low value security and
privacy scores. As regards data quality assessment, a score is
assigned to timeliness, completeness, accuracy and precision
levels [17][18]. In the end, final data (enriched with quality
and security scores) are temporarily stored in the collection,
named Processed Data, until they are shared with interested
users by means of an authenticated publish&subscribe system,
based on MQTT protocol [19]. NOS has been realized by
means of Node.JS platform® and MongoDB®. The latter is a
non-relational database (e.g., NoSQL), that is used for storage
management. The modules reported in Figure 1 interact with
each other using RESTful services. Finally, data are handled as
document in JavaScript Object Notation (JSON), a lightweight
data-interchange format. It has been chosen since it is both
easy for humans to be read and wrote and for machines to be
generated and/or parsed.
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Fig. 1. NOS architecture

ITII. SYSTEM ARCHITECTURE AND INTEROPERABILITY

The overall architecture conceived in this work is depicted
in Figure 2. The core entity is the TLSensing platform, which
periodically gathers and processes data from the connected
IoT devices. Then, NOS middleware has been connected to
the TLSensing platform, in order to communicate with the
IP Camera. In particular, the IP Camera communicates with
NOS via Ethernet standard. NOS uses HTTP GET to require
the images from the IP Camera (identified with ”1” in Figure
2) and saves them in MongoDB following a specific format.
After the analysis, the web app can require, through HTTP
requests, the data analyzed (identified with 2 in Figure 2).
In the next section, will be shown how images are managed
by NOS.

Shttps://nodejs.org/it/
Shttps://www.mongodb.com/

A. Image Processing

To provide reliable and accurate results to TLSensing, NOS
middleware handles snapshot from the IP Camera and enriches
them with quality and security parameters, as introduced in
Section II. Originally, NOS was conceived to manage scalar
data. Nevertheless, to reach Smart Building control, complex
data elaboration and processing must be proven. Therefore,
image elaboration process has been modified to fit the ap-
plication needs and properly manage multimedia data (e.g.,
images). The first action point was related to the creation
of an HTTP GET request to the IP Camera for acquiring
the latest snapshot captured. This action is repeated with a
fixed pace that can be modified before starting the image
acquisition process (as discussed in Section IV). The acquired
image comes in the Joint Photographic Experts Group (JPEG)
format. Once the HTTP response is received, the snapshot is
extracted from the HTTP body and stored in a JSON variable
with some additional information, such as timestamp, content-
length, content-type, source identification, and a “processed”
field equal to zero to denote that the image has not been
analyzed yet; finally, the JSON instance is stored in the Raw
Data collection.

Algorithm 1 simply explains how the image is analyzed
and evaluated. At the beginning, a query is sent to MongoDB
database: if there is a record with “processed” field equal to
zero, then NOS gets it and saves it in a JSON variable. At this
point, NOS verifies if the field denoting the identifier of the
source matches with one of the records stored in the Sources
collection (such a collection contains the information about
registered sources): if it does, then the source is registered, so
the analysis continues; if not, data come from a non-registered
source. Registered data are further distinguished on the basis of
the “content-type” field. In this way, both numerical data com-
ing from environmental sensor and image data can be filtered
with proper algorithms. Some basic security and quality image
controls have been implemented, which could be extended
and enhanced in future works. Security controls are named
“integrity” [0,1] and “robustness” [0,1,2]; they verify, respec-
tively, the correct resolution of the image and if the associated
timestamp comply with the interval time said before. Quality
controls were limited by the compressed nature of the JPEG
format; “information” [0,1] verifies if the current image differs
or not from the last acquired one; “detail” [0,1,2], instead,
classifies images on the basis of its size. How such values
are assigned to the “integrity”, “robustness”, “information”,
and “detail” fields will be clarified in Section IV. Finally,
the system stores the final JSON record, including the scores
just mentioned, in the final Processed Data collection. Such a
process is repeated until there are unprocessed records in the
Raw Data collection.

The results of NOS analysis are made available to the users
on an HyperText Markup Language (HTML) page linked to
TLSensing. Users can require the last image (and all its as-
sociated details) collected from the Processed Data collection
or make a query to visualize filtered images according to the
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Fig. 2. Overview of system architecture and interactions between main components

1 if rawdata.find(processed:0) > O then

2 rawdata.GetRecord();

3 else if Record.type=="Image’ then

4 else if SorcesAnalysis() Registered? then
5 ‘ ImageSecurity Verification();

6 else

7 ‘ ImageAnalysis();

8 end

9 else if SorcesAnalysis()=Registered? then
10 ‘ SensorDataSecurity Verification();

1 else

2 ‘ SensorDataAnalysis();

3 end

4 data.SaveRecord();
15 end
16 wait;

Algorithm 1: Pseudo-code associated to image process-
ing.

scores assigned during the analysis. Every request is performed
by means of a HTTP GET method to NOS server, which
makes itself queries to MongoDB database.

IV. EXPERIMENTAL SETUP AND PERFORMANCE
EVALUATION

The envisioned experimental setup is hereby described. It
is also clarified how the Smart Buildings requirements have
been addressed, along with a detailed analysis of some key per-
formance indices. TLSensing has been installed on the Pand-
aboard ES’, a versatile low-power and low-cost single-board
computer. It integrates a dual-core 1.2 GHz ARM Cortex-A9
MPCore Central Processing Unit (CPU), 384 MHz PowerVr
SGX540 GPU, IVA3 multimedia hardware accelerator with a
programmable DSP, 1 GB of DDR2 SDRAM, as well as an
SDCard slot, 10/100 Ethernet, Wi-Fi, and Bluetooth interfaces,
output video signal via DVI and HDMI, and two USB ports.
Along with TLSensing and NOS platforms, two software tools
have been installed, namely Node.JS (v5.0.0) and MongoDB

https://www.cs.utexas.edu/ simon/378/resources/PandaBoardES.pdf

(v2.4.9). Both the IP Camera and the Pandaboard have been
connected in order to create a local network. The described
IoT platform has been deployed in a research laboratory,
periodically monitoring both access control information and
environmental parameters, such as light and temperature con-
ditions. To properly address the Smart Building characteristics,
the available features have been stress-tested, with specific
reference to image acquisition. This is supposed to be the
heaviest among the tasks executed by the whole system.
Therefore, the overall behavior of the envisioned solution has
been tested in order to analyze the images acquired, with
specific requests, during the observation period of time, equal
to 30 minutes. The analysis has been performed with the NOS
system acquiring frames with three different sampling periods:
15, 30, and 60 seconds. The NOS system performs HTTP
requests to the IP Camera to get the images. Since the request-
response mechanism guarantees the camera to synchronously
answer, the system receives the frames and store them. Data
are communicated in JSON format. In particular, the JSON
variable, in correspondence to the field named ImageData,
contains the sequence of bytes that describe the image received
by the IP Camera, in JPEG format; the other fields contain the
attributes associated with the sample image. The used structure
is shown in Figure 3. The obtained output is shown through the
HTML page depicted in Figure 4. As for the implemented

Fig. 3. JSON variable describing a sample image

image controls, NOS operations have been evaluated during
the setting of detail, information, integrity, and robustness
fields. More in detail:
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Fig. 4. TLSensing platform web page showing values of the analyzed images
coming from our research laboratory.

o As for detail field, images have been captured in different
brightness conditions. It has been seen how dark images,
with a homogeneous pixel distribution and no details, are
characterized by smaller dimensions, compared with a
threshold vI. For this reason, the system classifies the
images with a detail value equal to 0. Instead, blurred
images, with few details, are classified with the detail
value equal to 1, as they have sizes between v/ and v2.
In the case of very detailed images, with a dimension
larger than v2, the detail field results to be equal to 2.
Figure 5 reports the average dimension of 10 samples
series, classified according to the three levels of detail.
Thresholds variations, v/ and v2, are related to the
image resolution; in fact, with a resolution of 480x640
pixels, the thresholds are set to v/=8 kilobyte and v2=20
kilobyte;

o The information field depends on variations. In particular,
when acquiring a series of consecutive samples (e.g.,
10) of the same image, if each sample demonstrates a
1% variation compared to the previous one, then, the
information field is set to 1 for the first image and 0
for the following ones;

o The integrity field has also been validated by replacing in
the HTTP GET request the IP Camera address with the
address of a generic image from the web. This image has
a different resolution compared to the ones obtained by
the IP Camera. During the analysis, the NOS system sets
integrity to O (i.e., in this way, it has been simulated the
presence of a non-registered source, since the IP Camera
is considered a registered one); therefore, the images
legitimately received by the known IP Camera have the
integrity field set to 1;

o The robustness field is set on the basis of the comparison
between the timestamps of the currently received image
and the previous one. In detail, if the differences between
the two timestamps is equal to the sampling time period,
then robustness is set to 2. Instead, if such a difference
is a positive value (e.g., due to a connection delay), then
robustness is set to 1. Lastly, if such a difference is a
negative value, then robustness is set to 0.

However, it was known that some error or violation at-
tempts would affect the information quality control, because
such an implemented feature does not go deeply within the
image content, mainly in terms of completeness, accuracy and
precision; anyway, this do not represent a main goal of the
presented work, so it is left as a future extension. Afterwards,
it has been evaluated how the system works setting different
time intervals between two consecutive images’ acquisition.
Figure 6 shows how the processing time of a single image
varies during three test sessions, each one of 30 minutes.
The acquisition time for the three sessions equals 15, 30, and
60 seconds, respectively. As a consequence, the number of
acquired samples is different for each test (for instance, 120,
60, and 30 samples, respectively).
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Fig. 6. Processing time of samples acquired during three test sessions, 30
minutes long each

The experimental campaign highlighted a general increase
of the processing time in every test session. In particular,
in the case of the 15 seconds test, after that period of
time, the processing time interval exceeds the acquisition one;
the more frequent the acquisition, the longer the processing
queue. As a matter of fact, this results in a bottleneck that
could be due to the limited computational capabilities of
the PandaBoard, stressed by recurrent queries to MongoDB.
Moreover it has been observed that the number of records in
the database continuously increase and this may also affect
the processing time with a higher acquisition period. When



comparing the experimental evidences, it clearly results that
after 1000 seconds (about 16 minutes), the system slows
down, which results in a longer processing time. In order to
effectively test the presented system’s suitability in a Smart
Building context, the same experiments have been repeated
with different time periods. By comparing system behaviors,
it clearly emerges that the system no longer suffers of such
a congestion phenomenon. The general system slowdown is
caused by the higher data dimension, with respect to the
original one. A possible solution could be the exploitation
of a more powerful motherboard. Nevertheless, this would
only be a shot-term answer to the questions, as it will only
delay the increasing in processing time. To definitely solve the
problem, a better approach could be a software modification,
specifically aimed at improving interaction between NOS and
the database (i.e., indices implementation in MongoDB, or
efficient queries usage). Note that NOS platform has been con-
ceived as hardware-independent, able to run on any gateway
or node. Hence, specific application context and requirements
could lead to the appropriate device/hardware combination. As
a further consideration, performances have also been evaluated
in terms of RAM occupancy. Compared with the total amount
available on the board, values reached about 60%, 26%, and
24% for the three cases, respectively. Such results suggest
that usability of this version of the presented solution in a
hard real-time or near real-time context is particularly limited.
Nonetheless, the system still remains an interesting candidate
for BMSs support and access control.

V. CONCLUSIONS AND FUTURE WORKS

This work focused on communication among heterogeneous
IoT technologies and platforms in a Smart Building context. In
particular, several hardware and software IoT solutions have
been glued together to provide a reliable monitoring system,
handling both scalar and media data belonging to either Inter-
net Protocol version 4 (IPv4) and IPv6 realms. To reach this
goal, an experimental testbed allowing interoperability among
different data sources and IoT platforms has been realized. The
proposed solution has been deployed in one of our research
laboratories to continuously monitor environmental conditions
and access control. The testbed has been practically validated
to be robust against abnormal behaviors. Despite the noticeable
results, the system still shows some margins of enhancement.
In particular, under certain conditions, the processing time
increases over acceptable thresholds, preventing its usability in
real-time contexts. The outcome is motivated by the involved
technologies, which could be replaced in the next future with
more powerful ones (i.e., Raspberry Pi 3). Another future
work concerns the integration, and/or the comparison, of the
proposed system with other existing IoT middlewares, as
to reveal advantages and drawbacks. To prove scalability, it
would also be of interest to deploy the presented solution in
a large-scale environment. Finally, the presented solution is
targeted to Smart Building applications. Nevertheless, without
serious restyling activities of the algorithms and/or the pro-
cessing tasks, the proposed solution can be easily exploited

and extended to other domains that require the management
of heterogeneous data provided by IoT-enabled technologies.
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