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ABSTRACT

Security threats may hinder the large scale adoption of the
emerging Internet of Things (IoT) technologies. Besides ef-
forts have already been made in the direction of data in-
tegrity preservation, confidentiality and privacy, several is-
sues are still open. The existing solutions are mainly based
on encryption techniques, but no attention is actually paid
to key management. A clever key distribution system, along
with a key replacement mechanism, are essentials for assur-
ing a secure approach. In this paper, two popular key man-
agement systems, conceived for wireless sensor networks, are
integrated in a real IoT middleware and compared in order
to evaluate their performance in terms of overhead, delay
and robustness towards malicious attacks.
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1. INTRODUCTION

Since the last decades, Internet of Things (IoT) emerged
in the form of innovative and customized services provided
to individuals and businesses in order to improve their every-
day experience. Such services are made available by hetero-
geneous technologies, which cooperate over a global network
infrastructure in different application domains. Lots of crit-
ical issues raise, due to the amount of involved entities and
generated information, such as scalability, security&privacy,
data quality preservation [6]. A scalable infrastructure, able
to deal with diverse data sources would enable the realiza-
tion of an efficient and reliable IoT system. In this direction,
we proposed a flexible and dynamic middleware architecture
for ToT, named NetwOrked Smart object (NOS). NOS acts
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as a distributed processing and storage layer for the data
collected by IoT deployments and provides a mechanism for
the automatic assessment of data quality and security by
means of well-defined algorithms [7]. A level of robustness
is assigned to each data source regarding the following secu-
rity features: integrity, confidentiality, authentication sys-
tem, privacy; while, as regards data quality, the following
requirements are considered: accuracy, precision, timeliness,
completeness. In this way, the user will be aware of the se-
curity and quality level of the data being accessed in order
to take informed decisions about their usage. Although this
represents a further advancement in securing an IoT sys-
tem, a fundamental aspect is still missing. In fact, most
security systems are based on the use of keys for encrypting
the transmitted data, in order to protect them from mali-
cious attacks. However, also the keys may be compromised,
thus hindering the correctness of the information. To cope
with such an issue, NOSs should include a key management
system, in order to directly deal with key distribution and
replacement and improving the robustness of the adopted
authentication and encryption mechanisms. In this paper,
two popular key management systems by Dini et al. [3] and
Di Pietro et al. [2], originally conceived for Wireless Sensor
Networks (WSN), are integrated in the real NOS prototyp-
ical platform.

2. RELATED WORKS

One of the main challenge, currently addressed in litera-
ture and in EU projects, is the development of an interop-
erable and secure platform, in order to provide services for
the users. Several middleware layers have been proposed to
enforce the integration and the security of devices and data
within the same information network, taking into account
the heterogeneity of devices and communication technolo-
gies of IoT [6]. By the authors, an attempt to provide a
lightweight and flexible middleware for IoT applications is
at the heart of the work reported in [7], where a prototypical
implementation of NOS, able to evaluate the data provided
by the IoT system both in terms of security and quality,
is presented. As a step beyond [7], in this paper we aim at
improving the actual NOS prototype with a robust key man-
agement system, in order to further secure the communica-



tions with data sources. To this end, the analysis of the state
of the art started from the available approaches designed for
WSN scenarios. Many solutions have been proposed aim-
ing to overcome traditional pre-distribution approaches [8].
Among them, the algorithms proposed by Dini et al. [3]
and Di Pietro et al. [2] gained popularity due to their effi-
ciency in terms of resource consumptions and resilience to-
wards malicious attacks. For such reasons we decided to in-
tegrate them within NOS platform. As regards IoT context,
a limited contribution in the key management field actually
exists. [5] only provides a classification of existing proto-
cols relying on key distribution mechanisms to establish a
secure communication channel among the sources. It con-
cludes that symmetric approaches are still not the default
choice for IoT. Instead, public key cryptography is likely
to be increasingly recommended, provided that the asso-
ciated asymmetric techniques are properly optimized. In
[5] opinion, a trusted third party will take a more active
role to secure [oT and to adapt to its heterogeneous nature.
[1] proposes a lightweight key management protocol for e-
health applications. It is based on collaboration to establish
a secure end-to-end communication channel among resource
constrained sources. Third parties are in charge of execut-
ing the cryptographic primitives. However, the evaluation
showed a high overhead and the use of third parties and
of a certificate authority heavily impacts on scalability and
efficiency. [9] and [10] adopt a group key management dis-
tribution scheme for WSN in a IoT scenario in which the
nodes are organized in a hierarchical structure. Note that,
in our approach we do not infer about a hierarchy among
the sources, since we consider each device independent from
the others.

3. SYSTEM ARCHITECTURE

The nodes and the users are the principal actors in an IoT
scenario: the former acts as data sources; while the latter
may be individuals, or businesses, or other kinds of applica-
tion, interested in accessing services provided by NOSs ex-
ploiting the IoT data. NOSs aim to act as a distributed mid-
dleware bringing the data processing closer to the sources
than a centralized platform. The southbound NOS inter-
faces use HTTP as network protocol; they include both
the handling of the transmissions by nodes and a service
for source registration. In fact, NOS supports either regis-
tered sources or anonymous ones. Registered ones are as-
sociated with an identifier, and, optionally, with an encryp-
tion scheme, including the proper keys for interactions with
NOSs. The management of such keys will be investigated in
Sec. 4. As regards transmissions, for each incoming data,
NOSs extract: the kind of data source, the communication
mode, the data type, and a timestamp. Since received data
are highly heterogeneous, NOS initially puts them in the
Raw Data storage unit and, periodically, elaborates them
according to a two-phase structure, which includes Data
Normalization and Analysis. Then, data are uniformly rep-
resented, and enriched with relevant metadata in the form
of a score for the robustness of each security and data qual-
ity property considered: data confidentiality, data integrity,
source privacy and source authentication (Security Analy-
s1s); data accuracy, data precision, information timeliness
and completeness (Data Quality Analysis). The rules exe-
cuted for the assessment of security and quality scores are
not object of this work, since the results are in [7]. The data

thus processed are inserted in the Processed Data collection
and are used for providing services by means of a publish/-
subscribe mechanism, based on Message Queue Telemetry
Transport (MQTT) protocol (northbound interfaces).

4. KEY MANAGEMENT SYSTEMS

NOSs allow the registration of the sources interested in
providing data to the IoT system, as said in Sec. 3. An
unique identifier is assigned to each source by NOS and, if
the source wants to exchange its data in a secure way, NOS
assigns the proper keys for encrypting the transmitted infor-
mation. As emerged in Sec. 2, no existing solution specif-
ically addresses the key management in an IoT platform.
Therefore, we aim to integrate two popular and robust key
management systems, named Dini et al. [3] and Di Pietro
et al. [2], conceived for WSN in our distributed NOS.

4.1 Key Management by Dini et. al

The distribution system of the cryptographic keys pre-
sented by Dini et al. [3] responds to the requirements of
dynamism and mobility of IoT, since it is not conceived for
a fixed network topology, but let the nodes to dynamically
join and leave the network. Also the resource constraints of
the nodes are taken into account, thus reducing the network
traffic and the processing operations. This approach rep-
resents a node-to-node distributed key agreement, support-
ing the creation of secure communication channels, which
connect sequences of adjacent nodes sharing the same keys.
This result is achieved by propagating the key connecting
the start node and the first subsequent node to all the other
nodes in the channel. Once a secure channel has been es-
tablished, no hop-by-hop encryption/decryption is required.
Two set of keys are stored in each node: the global and the
local. The former is assigned by NOS during the registration
phase and is used to legitimate the encrypted communica-
tions among the sources within the IoT system. The latters
are directly assigned by NOS to a source or indirectly by a
source to another one (just owning the same global key) and
are used for encrypting the transmitted data. Global keys
are only aimed at the propagation of the local keys, as spec-
ified in the following. Each key is denoted by a name and
a value. The name K of a local key consists of two compo-
nents: (i) Kpode, which is codified in the d most significant
bits of K, and is equal to the name of the NOS which gen-
erated the key; (ii) an incremental number Kjncr, which is
codified in the least significant bits of K. In a similar way,
the global keys have a value and a name, which is the or-
der number of that key in the pool of key values generated
by each NOS by means of the algorithm in [4]. Keeping in
mind that multiple NOSs could act in the IoT environment,
each NOS N stores three tables aimed at preserving infor-
mation about keys and connections with registered sources:
(i) the connection table CTx, which contains one entry for
each source S connected to NOS N; more in detail, the en-
try C'T'n,s contains the list of the local keys K; generated by
N (Knode is equal to N) shared with S, which allows mul-
tiple connections (N, S)K;; (ii) the global key table GT,
including one entry for each global key generated by NOS
N (Knode is equal to N); (iii) the local key table KT, con-
taining an entry for each local key K generated by another
NOS (Knode is not equal to N). The information included
in KTxn are required in case a source begins to send its data
to another NOS, which does not corresponds to the NOS to



which it was registered before. In case of only one NOS, no
local key table is required. Instead, since data sources do not
generate local keys by themselves, they store only two local
tables: the connection table, including their active connec-
tions with NOS and other sources, and the global key table.
The number of global keys stored by a source depends on
the specific application domain, since a source could provide
data belonging to different contexts and, therefore, register
to NOS with multiple credentials. Such a case is not consid-
ered in this paper. Algorithm 1 outlines the steps of the key
generation and distribution proposed by Dini et al. It also
provides a mechanism for the local key replacement. The
new key value has to be updated into the connection key
table of each node which shares this key. This is achieved
by propagating a key replacement message to all the sources
directly connected to NOS. Such a procedure is periodically
started by NOSs, to improve the system robustness, or in
case of malicious node detection. For further detail we refer
to [3]. If, otherwise, a global key has been compromised,
then it should be discarded from the network and further
updated. In this case, NOS will send an invalidation mes-
sage containing the name of the compromised key; therefore,
the sources will discard such a key and they could not use it
to establish other connections (e.g., with possible malicious
nodes).

4.2 Key Management by Di Pietro et. al

Di Pietro et al. [2] scheme is composed of two main phases.
In the first one, the new session key is autonomously gen-
erated by each source, while in the second one the new ses-
sion key is synchronized among the registered sources. In
fact, the algorithm guarantees that each source generates
and shares the same key. MSG denotes a message that a
source wants to send, while Ej (M SG) indicates the encryp-
tion algorithm E employing the key k. E,-1(MSG) repre-
sents the decryption of MSG. The length in bits of key k is
denoted by ¢. H and G are one-way hash functions, which
do not need to be kept secret, as well as FE. Each source is
provided by NOS, during the registration phase, with two
random seeds, S1 and S2, each ¢ bits long. Each source can
store an integer counter representing the sequence number
of the current session key. The final value of the key is repre-
sented by the XOR boolean function applied to the results of
the hash operations on the two seeds. Algorithm 2 outlines
the steps of the solution proposed by Di Pietro et al. for the
key generation and distribution; while Algorithm 3 defines
the key update function. There exist two different scenarios
for the application of this scheme. The former requires a
single central entity in charge of acts as a synchronizer for
performing the re-keying; while the latter is a distributed
approach, in which the sources should rely on themselves to
achieve synchronization in the re-keying process. We adopt
the second one, where multiple NOSs manage the configura-
tion activities among the registered sources, which, in turn,
do not directly initiate any re-keying process. This differs
from the original Di Pietro et al. approach, in which each
node could initiate the re-keying activity. NOS invokes re-
keying commands, encrypted with the last key generated by
the sources, periodically. When a source receives by NOS
a message that requires to update the current session key,
it first saves the current value of the key, and then updates
the session key. The source must save the value of the pre-

Algorithm 1 Dini et al. Key Distribution

if (N, S)K exists in CTs then
S sends D to N encr with K
N decrypts D with K

else
G = findGlobalKey(N, S)
if (G == “) then

S communicates with N through adjacent node M with
connection (S, M)K
S sends D to M encr with K
if (M, N)K exists then
M sends D to N encr with K
N decrypts D with K
S and N update their CT
connection (S, M, N)K set
else
if (M, N)K’ exists, where K!= K’then
M sends D to N with couple K = (Kynode; Kiner)
received by S encr with K’
N sends an ack to M
M, S and N update their CT
connection (S, M, N)K set
else
if (M, N)G exists then
M sends D to N with couple K = (Kyode,
Kiner) received by S encr with G
N sends an ack to M
M, S and N update their CT
connection (S, M, N)K set
else
does not exist any G shared by M and N
M communicates with N through adjacent
nodes
while connection with N set or adjacent nodes
available do
execute searchAdjacentNodes()
end while
comment: if such procedure fails, S is discon-
nected from the network
end if
end if
end if
else
N generates a new local key K
S sends to N the couple K = (Knode, Kiner) encr with

S sends an ack to N
N and S update their CT
S can send D, encr with K, to N and can decrypt messages
from N with G
end if

. end if




Algorithm 2 Di Pietro et al. Key Generation

Initialization
2: currentSession = 0
S1’ = H(S1)
4: 52’ = G(S2)
k = S1’ XOR S2’
6: while true do
8 MSG reception

if MSG.session == currentSession then
M = E,_1(MSG)
10: else
M=E,;.-1(MSG)
12: end if
if MSG.type == wupdateSession then
14: execute updateKey() see Algorithm 3
end if
16: continue with normal execution

end while

Algorithm 3 Di Pietro et al. Key Update Function

updateKey()

S1’ = H(S1)
3: 82’ = G(S2)

kota = k;

k = S1’ XOR S2’
6: currentSession = currentSession + 1

vious key, since it could receive messages that have been
previously encrypted with the old key.

S.  EVALUATION AND COMPARISON

NOS has been implemented as a real prototype in a modu-
lar architecture, by means of Node.JS, MongoDB for storage
management, and Mosquitto for MQTT mechanism. Such
features allowed us to easily integrate the new modules re-
lated to the two key management systems to the previous
version of NOS [7]. In our experimental setup, a NOS runs
on a Raspberry Pi. To simulate the behavior in a real-world
setting, it is connected to open data feeds, provided in real
time from six sensors at the meteorological station in Cam-
podenno (Trentino, Italy). The sources are distinguished
in registered and no registered ones in two different scenar-
ios. The former includes 2 registered and 4 no registered
sources; while the latter includes 3 registered sources and 3
no registered ones.

5.1 Overhead

The overhead analysis takes into account three metrics:
the execution time, the storage capacity and the process-
ing effort required by the algorithms. As regards the aver-
age execution time T(s, z), s is the number of sources and
z represents the number of parallelizable operations to be
performed:

T(s,2) = Theq + TT(Z) + To(s) (1)
Where: (i) Tseq is the execution time of the non-parallelizable
sections of the algorithm; (ii) TCT(Z) is the execution time of
the parallelizable ones; (iii) To(s) represents the communica-
tion time spent among the sources. In the first scenario, s is
equal to 2. In Dini et al. there is no parallelizable operations,
therefore z is equal to 0. Hence: (i) Tseq has been evaluated
to be equal to 28ms; (ii) TCT@ is equal to 0; (iii) 75 (2) is 4ms.
The final execution time T'(2, 0) is 32ms. A similar result
is obtained for the second scenario, with s equal to 3. Such

an overhead depends on the hop number required for the
key propagation from NOS towards the most distant source.
Instead, regarding the storage capacity required from the
sources, we have that the information stored in CT and GT
tables are: (i) 2 bytes for the global key name; (ii) 8 bytes
for the global key value; (iii) 1 byte for Kincr for each lo-
cal key; (iv) in the first scenario, Kpode is equal to 1 byte,
therefore the name of the local key requires 2 bytes; while,
in the second scenario, the name of the local key requires
3 bytes; (v) 8 bytes for the local key value. Summarizing,
with 2 and 3 registered sources, 20 and 21 bytes of storage,
respectively, are required. Concerning the dimension of the
transmitted message, each packet for the initial local key
generation is 10 bytes, for the first scenario, and 11 bytes
for the second one; while, each packet generated by the re-
keying operation requires 18 and 19 bytes, respectively. The
execution of the re-keying is expected to generate a response
message of 1 byte. As regards the computational overhead,
NOS performs: (i) 2 concatenations to establish the name of
the key; (ii) the computation of the key value. While, each
source, upon receiving a new local key, has to perform: (i) 2
decryption operations to know the encrypted content of the
message including the new key sent by NOS. Now we refer
to the same overhead metrics for Di Pietro et al. The ses-
sion key generation is a parallelizable operation, therefore:
(i) Tseq is 4ms and 8ms for the first and second scenario, re-
spectively; (ii) TCT(U is 3ms for both the scenarios; (iii) To(2)
is equal to 0, since no message exchange is performed. The
final execution time are, then 7ms and 11ms. Concerning the
storage, the 2 seeds (arbitrary long g bits) and the 2 keys of
8 bytes has to be stored. At the computational level, the re-
quired operation are: (i) 1 decryption, in order to know the
encrypted content of the initialization message sent by NOS;
(ii) 2 hash functions, in order to generate the key value; (iii)
1 XOR operation. We can conclude that the algorithm of
Di Pietro et al. presents better perfomances with respect to
Dini et al., because: (i) some operations are parallelizable;
(ii) no message is exchanged among the sources; (iii) the
storage required by Dini et al. is influenced by the number
of registered sources, therefore it may be more affected by
scalability issues then Di Pietro et al.

5.2 Delay

Delay (ms)
o
i

Dini et al. Dini et al. Di Pietro
global keys local keys etal.

Figure 1: Delay of key generation

The delay introduced by the two algorithm has been eval-
uated as the time required for the key generation, propaga-
tion and update (Fig. 1). In Dini et al. the key generation
is more expensive (about 7ms for the global keys, 10ms for
the local keys) than in Di Pietro et al. (about 3ms), due to



the more complex operations to be executed. However, such
a delay, for Dini et al., will remain unchanged with respect
to the increase of the number of sources. As regards the

W with global key I with local key

235 |

Delay (ms)

scenario 1 scenario 2
Figure 2: Delay of key propagation in Dini et al. with direct
connections

key propagation, we consider only the Dini et al. approach,
since Di Pietro et al. does not include any key communica-
tion among sources. The results are shown in Fig. 2 and
3concern three situations: (i) the key propagation happens
with a direct connection between the sources, by means of a
shared global or local key; (ii) the key propagation happens
through adjacent nodes, also by means of a shared global
or local key; (iii) the case of unreachable sources. Finally,
the delay of key replacement has been studied. In both the
algorithms, the results depend on the number of registered
sources (Fig. 4). Dini et al. approach presents an higher de-
lay with respect to Di Pietro et al. due to the time required
for key propagation.

Ml withglobal key [l with local key unreachable source

Delay (ms)

B
B

v =

scenario 1 scenario 2
Figure 3: Delay of key propagation in Dini et al. through
adjacent nodes

5.3 Robustness towards malicious attacks

In order to compare the robustness of the two key man-
agement methods towards malicious attacks, it is important
to distinguish between external attacks, performed by en-
tities acting outside the IoT secure network and internal
attacks, performed by registered sources. Concerning ex-
ternal attacks, adopting the algorithm of Di Pietro et al.,
an external node cannot discover the session key, since it is
not exchanged among the registered sources and NOS; the
only way to succeed with such a kind of attack is to dis-
cover the seeds and the current session key. The seeds are
sent in clear by NOS during the registration phase, and this
represents the main drawback of Di Pietro et al. approach.
Instead the session key continuously changes over the time.

[ Dini et al. global keys [l Dini et al. local keys Di Pietro et al.

Delay (ms)
w
3
th

scenario 1 scenario 2

Figure 4: Delay of key replacement

More robust is the approach of Dini et al., which adopts
the algorithm in [4] for the random key pre-generation pro-
cess. The value of a global key cannot be easily derived from
the value of another global key, but if one of them is eaves-
dropped, a part of the network may be compromised. To
reduce the risk, Dini et al. also introduces the local keys as
a second level of security. An external source could eaves-
drop a packet containing the frequence of re-keying and the
name of the local key. However, in order to gain the value of
the local key, it should know the encryption algorithm, by
compromising NOS itself. Both the approaches do not con-
sider possible physical attacks to the sources, which would
allow to directly steal the seeds, the session numbers or the
global/local keys. As regards the resilience towards internal
attacks, Dini et al. and Di Pietro et al. do not directly refer
to key revocation due to an insider attack, and also in our
implementation we do not consider this case, which could
be accounted as a future extenstion.

6. CONCLUSIONS

The paper has presented an integration of two popular key
management systems in the existing IoT middleware NOS.
The adoption of robust key distribution and replacement al-
gorithms has the scope to improve the resilience of the IoT
system, thus enhancing the reliability of the services pro-
vided to users. The overhead, the delay and the robustness
towards malicious attacks of both the solutions have been
compared by means of a real NOS prototype. Future exten-
sions include the evaluation of the presented solutions in a
wider scenario in presence of multiple NOSs.
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