
Secure OM2M Service Platform

Sabrina Sicari, Alessandra Rizzardi, Alberto Coen-Porisini

DISTA, Università degli Studi dell’Insubria

Varese, Italy

{sabrina.sicari;a.rizzardi;alberto.coenporisini}@uninsubria.it

Luigi Alfredo Grieco

DEI, Politecnico di Bari

Bari, Italy

a.grieco@poliba.it

Thierry Monteil

LAAS-CNRS

Toulouse, France

monteil@laas.fr

Abstract—Machine-to-Machine (M2M) paradigm is one of
the main concern of Internet of Things (IoT). Its scope
is to interconnect billions of heterogeneous devices able to
interact in various application domains. Since M2M suffers
from a high vertical fragmentation of current M2M markets
and lacks of standards, the European Telecommunications
Standards Institute (ETSI) released a set of specifications for
a common M2M service platform. An ETSI-compliant M2M
service platform has been proposed in the context of the open
source OM2M project. However such a platform currently
only marginally addresses security and privacy issues, which
are fundamental requirements for its large-scale adoption.
Therefore, an extension of the OM2M platform is proposed,
defining a new policy enforcement plugin, which aims to
manage the access to the resources provided by the platform
itself and to handle any violation attempts of the policies.

Keywords-Internet of Things, OM2M, Security Enforcement

I. INTRODUCTION

Internet of Things (IoT) paradigm has been approaching

our lives thanks to the availability of wireless commu-

nications (e.g., RFID, WiFi, 4G, IEEE 802.15.x), which

have been increasingly employed as technology driver for

smart monitoring and control applications [5] [12]. The IoT

concept is many-folded, since it embraces many different

technologies, services, and standards. IoT deployments may

adopt different processing and communication architectures,

technologies, and design methodologies, based on the target

scenarios. Therefore, a middleware may be neeeded in order

to deal with such heterogeneity of devices and communica-

tion protocols [10].

In this context, Machine-to-Machine (M2M) market has

been spreading, due to the fact that the number of M2M con-

nections is continuously increasing. The advantages of M2M

applications range in various application domains from

building, energy, healthcare, industrial, transportation, retail,

to environmental services. The goal is to shift from the actual

vertical and fragmented deployments to a global horizontal

M2M platform. In this direction, several standardization

efforts have been done to face the M2M interoperability

challenge [7]. Among them, a very promising proposal

is being contributed by the European Telecommunications

Standards Institute (ETSI). ETSI released several specifi-

cations [1] [2] [3] covering M2M service requirements,

the functional architecture, communication interfaces, and

how to interwork with existing standards and technologies.

Moreover, in [4], the OM2M project is proposed, consisting

of an ETSI-compliant platform aiming at facilitating the

interoperability among M2M applications and devices. Such

an architecture is extensible via plugins and supports several

protocols and technologies.

However, the actual OM2M platform only marginally

addresses the security and privacy requirements. In fact, such

a high level of heterogeneity of involved technologies and

protocols makes such an architecure as object of multiple

security and privacy attacks. Traditional security counter-

measures and privacy solutions cannot be directly applied

to IoT technologies [14] (e.g., limited power resources,

scalability issues). Furthermore, privacy and security issues

should be treated with a high degree of flexibility and

adaptation to the target environment [6] [8]. Note that, in

order to reach a full acceptance by users it is mandatory

to define valid security and privacy mechanisms suitable for

IoT as well as M2M applications [9] [13] [12] [15]. More in

details, confidentiality and integrity have to be guaranteed, as

well as authentication and authorization mechanisms in order

to prevent unauthorized users (i.e., humans and devices)

to access the system. Whereas, concerning privacy require-

ment, both data protection, anonymity and users personal

information confidentiality have to be ensured, since devices

may manage sensitive information (e.g., user habits). It is

important to remember that in IoT and M2M contexts the

number of violation attempts is high. So, it is fundamen-

tal to define and develop some enforcement mechanisms.

Therefore, our contribution lies in the extension of OM2M

platform with a policy enforcement layer, able to deal with

security and privacy application-specific requirements and

violation attempts, in order to increase the robustness of the

actual architecture.

The rest of the paper is organized as follows. Section II

describes the OM2M standard platform with the involved

plugins and functionalities, then our security extension is

discussed. Section III analyzes the behavior of the extended

platform. Section IV presents an application example, while

V ends the paper and provides some hints for future works.

2015 IEEE 12th International Conference on Autonomic Computing

978-1-4673-6971-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICAC.2015.59

313

II. OM2M SECURE PLATFORM

A. OM2M standard platform

OM2M project has been proposed as an ETSI-compliant

platform for M2M interoperability [4]. OM2M provides a

horizontal service platform which facilitates the deployment

of vertical applications and leads innovation towards an

effective interoperability. It provides a RESTful Service

Capability Layer (SCL) accessible via open interfaces to

enable the development of services and applications in-

dependently of the underlying network. RESTful API are

provided for XML data exchange through unreliable con-

nections within a highly distributed environment. Each SCL

contains a standardized resource tree where the information

is stored. A resource is uniquely addressable via a Universal

Resource Identifier (URI), and has a representation that can

be transferred and manipulated with methods (e.g., retrieve,

update, delete, execute). An SCL resources tree supports

different kind of resources, as described in the following.

The ”sclBase” resource describes the hosting SCL, and is

the root for all other resources within the hosting SCL. The

”scl” resource stores information related to distant SCLs,

for example residing on other machines, after a successful

mutual authentication. The ”application” resource stores in-

formation about the application after a successful registration

on the hosting SCL. The ”container” resource acts as a

mediator for data buffering to enable data exchange between

applications and SCLs. The ”contentInstance” resource rep-

resents a data instance in the container. The ”accessRight”

resource manages permissions and permissions holders to

limit and protect the access to the resource tree structure.

The ”group” resource enhances resources tree operations

by adding the grouping feature. The ”registration” resource

allows subscribers to receive asynchronous notification when

an event happens such as the reception of new event or the

creation, update, or delete of a resource. The ”announced”

resource contains a partial representation of a resource in

a remote SCL to simplify discovery request on distributed

SCLs. The ”discovery” resource acts as a search engine

for resources. The ”collection” resource groups common

resources together.

Moreover, the SCL works as an interface between the

network access and the application domain. Each device has

to register the resources in the OM2M standard platform

which in turn can be accessed from the applications from

OM2M platform in a seamless way. More in details, an SCL

can be deployed on an M2M Network (NSCL), a Gateway

(GSCL), or a Device (DSCL). It provides several service

capabilities to enable: machine registration, synchronous and

asynchronous communication, resource discovery, access

rights management, group broadcast, etc. Fig. 1 presents an

high level representation of OM2M architecture.

An M2M Device runs applications using the SCL (i.e.,

DSCL). It can connect directly to the network domain via

 ! "#$$%&'()&*+,"

-*./"0/)1*.2"

0/)1*.2"#''/,,"

 ! "3/.4&'/"-($(5&%&)&/,"

67("

678"

 ! "

#$$%&'()&*+,"

 ! "-./0&'."

1($(2&%&)&.,"

34("

 ! "5().6(7"

 ! "

#$$%&'()&*+,"

 ! "3/.4&'/"

-($(5&%&)&/,"

 ! "9/4&'/"

 ! "#$%&'"

()*&"+*,-$)."

 ! "9/4&'/"

8%(

!

"

#

$

%

&

'

(

$

)

*

+

,

'

(

!

-

+

.

!

/

0

*

"

!

#

*

1

'

(

$

)

*

+

,

'

Figure 1. OM2M high level architecture

the access network and may provide service to other devices

connected to it. It can also be connected to the network

domain via a Gateway through a Local Area Network.

A Gateway also runs M2M applications using the SCL

(i.e.,GSCL), and can act as a proxy between local de-

vices and the network domain. The Network Access allows

M2M devices and gateways to communicate with the Core

Network. The SCL provides functions that can be shared

by different applications. Well-defined network management

functions enables to manage the Access and Core Networks.

They consist of all the functions required to manage the SCL

in the network domain.

Three reference points based on open APIs are specified:

mIa, dIa, and mId. The mIa reference point allows a Network

Application (NA) to access the NSCL. The dIa allows

a Device or Gateway Application (D/GA) to access the

D/GSCL. The mId reference point allows a D/GSCL to

access the NSCL. These interfaces are defined in a generic

way to support a wide range of network technologies and

protocols in order to enhance interoperability. Note that

OM2M platform is accepted as an open source project by the

Eclipse foundation and it is part of the Eclipse IoT Working

group 1.

Summarizing, the building blocks of an ETSI M2M

system are: devices, gateways, and networks. A device is

a machine equipped with a set of resources/services that

can be made accessible to the rest of the system. Many

devices may also bind to the same gateway in order to make

their resources available outside their local domain. Finally,

1http://www.om2m.org

314

the resources available at many gateways and devices are

exposed at a wide area scope through an ETSI M2M

network.

B. OM2M secure extended platform

As just described, OM2M provides a flexible SCL, which

can be deployed in an M2M network, a gateway, or a

device. An SCL is composed of small tightly coupled

plugins, each one offers specific functionalities. A plugin

can be remotely installed, started, stopped, updated, and

uninstalled, without requiring a reboot. It can also detect the

addition or the removal of services and adapt to the changes,

thus facilitating SCL extension. Thus, OM2M platform is

extensible via plugins and is able to support several protocols

and technologies. The OM2M layers are shown in Fig. 2.

 !"#$%&'()*+,%

Figure 2. OM2M building layers

In particular, OM2M proposes a modular architecture

running on top of an OSGi Equinox runtime [11]. The

CORE is the main plugin that should be deployed in each

SCL. It provides a protocol-independent service for handling

RESTful requests. Specific communication mapping plugins

can be added to support multiple protocol bindings, such as

HTTP and CoAP. In fact, we can easily use HTTPS with

the jetty plugin. As regards security, the TLS-PSK protocol

is used, which aims at securing M2M communications on

the basis of pre-shared keys. For TLS-PSK we need to

use an other plugin that is not in the open-source version

because there is a problem of license. Nevertheless, such a

secure plugin only refers to securing the communications

among the involved modules. In fact, OM2M currently only

marginally addresses security issues: no attention is paid

to the definition of security and privacy policies for the

management of services and the filtering of data among

the requesting applications. Therefore, this contribution is

focused on adding a secure policy enforcement layer. It

provides the same interfaces of the services, but before

proceeding with the processing operations by the CORE

plugin, verifies the compliance with the security and privacy

policies associated to the requested services.

More in details, as shown in the component diagram

in Fig. 3, the CORE plugin implements the SCL Service

interface to handle generic RESTful request. It receives a

protocol-independent request indication and answers with a

protocol-independent response confirm. The Router defines

a single route to handle each request in a resource controller

simply using request URI and the required method. In fact,

the Resource Controller implements CRUD methods (i.e.,

create, retrieve, update, delete) for each resource. It performs

required checking operations such as access right authoriza-

tion, and resource syntax verification. The Resource DAO

provides an abstract interface to encapsulate all access to

resource persistent storage without exposing any details of

the database. The Event Notifier sends notifications to all

interested subscribers when a resource is created, updated

or deleted. It executes filtering operations to discard events

not of interest to a subscriber. The Resource Announcer

announces a resource to a remote SCL to make it visible

and accessible to other machines. It also handles resource

de-announcement. The Request Sender holds discovered

protocol-specific clients implementing the Client Service

interface. It acts as a proxy to send a generic request via the

correct communication protocol. The Interworking Proxy

holds discovered interworking proxy units (IPUs) imple-

menting the IPU Service interface, and acts as a proxy

to call the correct IPU controller. Device Manager holds

discovered Remote Entity Managers (REMs) implementing

the REM Service interface, and acts as a proxy to call the

correct device manager controller. More details about these

components and their interactions are available in [4].

Other plugins can be deployed using the same approach

in order to interwork with other protocols or to integrate

new capabilities. In our contribution, a new component

plugin, named Policy Enforcement plugin, is added and

provides an interface towards the CORE plugin. Within the

Policy Enforcement plugin, the Policy Enforcement compo-

nent is responsible of handling the requests, while the Pol-

icy Manager manages the security and privacy policies de-

fined for the M2M services and data. Note that, for each re-

source request or event notification, the Policy Enforcement

component queries the Policy Manager component, in order

to take a decision on the basis of well-defined enforcement

mechanisms (i.e., a set of policies specified for each kind of

resource). In this way, the Policy Enforcement plugin acts

as a layer (Fig. 2) between the CORE plugin and the other

interacting plugins.

III. BEHAVIORAL ASPECTS

In a typical ETSI M2M scenario, firstly the gateway and

the device mutually authenticate to the NSCL. In order to

add the proposed Policy Enforcement plugin to the existing

OM2M platform implementation (available at 2), it has

2http://wiki.eclipse.org/OM2M/Download

315

Figure 3. OM2M component diagram

to be registered to the D/G/NSCL, which in turn create

a description container, where descriptive information are

stored, and a data container, where the data are stored.

Such data regards, in the case of the Policy Enforcement

plugin, the set of policies related to the resources handled

by the OM2M platform. As shown in Fig. 4, such a

plugin provides an application for handling the service/data

requests (i.e., POLICY ENFORCEMENT REQ) and an ap-

plication for handling the service/data responses (i.e., POL-

ICY ENFORCEMENT RESP). Such applications represent

the interfaces exposed to the CORE plugin, in order to allow

the interactions between the two components.

Note that the Policy Enforcement plugin can be activated

or not within the OM2M platform at the different levels (i.e.,

D/G/NSCL), depending on the desired level of security and

the importance of the compliance of the defined security and

privacy policies with the services/data disclosure.

In the following section, an application example is pre-

sented, in order to clarify the effectiveness of the proposed

policy enforcement mechanism.

IV. APPLICATION EXAMPLE

In the following application scenario, an issuer wants

to handle, via RESTful requests, a set of GPS location

information regarding the vehicles in a particular area.

Supposing that communications happen by means of HTTP

protocol, the sequence diagram in Fig. 5 illustrates the case

study, in which a device reports the GPS values and the

issuer receives the relative notifications (i.e., the presence of

a particular vehicle on which the GPS device is installed).

Once the GPS IPU plugin discovers the device which

sends the GPS information, it creates on the SCL the

corresponding GPS application and data container, where

to store the location events (i.e., transactions 1-7 in Fig. 5).

Figure 4. OM2M enforcement plugin

Note that, during this phase, the Policy Enforcement plugin

is informed about the new resource and, as a consequence,

asks to the CORE plugin what kind of security and privacy

policies it has to apply for the future requests of the data

provided by the application just created (i.e., transactions

8-11 in Fig. 5). For example, a policy to be applied to

the location information is that only issuers registered as

316

Figure 5. OM2M interactions with policy enforcement plugin

members of the ”traffic analytics department” can access

to the relative data. Such a policy may be expressed in

XML syntax, following the SCL RESTful API (Section II),

as presented in Listing 1. Of course, such policies can be

set by a system administrator or can be based on rules

established according to an ontology of the data provided

by the different applications, which interact with the CORE

plugin.

1 <p o l i c y r e s o u r c e = ’GPS a p p l i c a t i o n ’>
2 <a c c e s s>
3 <r o l e> t r a f f i c a n a l y t i c s d e p a r t m e n t< / r o l e>

4 < / a c c e s s>
5 < / p o l i c y>

Listing 1. XML policy

The issuer sends a GET HTTP request in order to

discover the registered applications (i.e., transactions 11-

15 in Fig. 5); therefore, it sends a POST request to

subscribe to the GPS application, in order to receive the

corresponding contentInstances resources (i.e., transactions

16-17). Before giving the consent to the subscription, a

POLICY ENFORCEMENT REQ as to be sent by the CORE

317

plugin to the Policy Enforcement plugin (i.e., transaction

18), as presented in Section III). The Policy Enforcement

plugin has to evaluate each request from subscribers and

decide wheter to approve or not the request itself on the

basis of the stored security and privacy policies (i.e., POL-

ICY ENFORCEMENT RESP in Section III, transactions 19-

25 in Fig. 5). More in details, if the requesting issuer is

registered as a member of the ”traffic analytics department”,

the response if the Policy Enforcement plugin will be ”STA-

TUS CREATED”, otherwise the subscription is denied and

the response sent to the issuer is ”STATUS DENIED”.

As soon as an event is reported by the IoT device, the

GPS IPU plugin creates a new contentInstances resource,

which is notified to the issuer only if he is authorized by

the Policy Enforcement plugin (i.e., transactions 26-37 in

Fig. 5). In particular, the Policy Enforcement plugin verifies

the correspondance of the issuer role with the policies

associated to the requested data; in case of positive outcome,

the notification is allowed and a POST request is sent to

the subscribed issuer, otherwise the notification is denied.

Note that Policy Enforcement plugin traces the transactions

both from outside and from the inside of the SCL, as a

firewall, in order to prevent misbehaving activities. Hence,

it is important to point out the definition of enforcement

mechanisms, which allow to deal with violation attempts.

The presence of the Policy Enforcement plugin generates

an overhead of communications with respect to the standard

OM2M platform, but it allows to integrate the system with

a policy management and enforcement point, in which

security and privacy policies can change without the need to

reconfigure the CORE plugin, exploiting the XML language

potentiality. In particular, regarding the example investigated

in this section, there is an overhead in the initial phase

of the device discovering (the transactions 3, 6, 8-11 in

Fig. 5); such an overhead occurs only once, as well as the

overhead due to the subscription requested by the issuer

(the transactions 18, 19, 20, 23 in Fig. 5). Finally, at each

reported event, there is an overhead due to the verification of

policies (the transactions 29, 30 in Fig. 5) and, possibly, the

notification to the issuer (the transactions 31, 36 in Fig. 5).

Note that such a distribution of the overhead can be applied

to other case studies.

V. CONCLUSION

In this paper, an extension of the open source OM2M plat-

form has been presented, in order to add new functionalities

related to the security and privacy management of resources.

To this end, a new policy enforcement plugin has been

integrated in the actual OM2M architecture, communicating

through RESTful requests. In such a way, the plugin is able

to trace the transactions both from outside and from the

inside of the system, thus filtering the event notifications

and preventing violation attempts. In the next future, we

plan to investigate a real case-study in order to verify the

effectiveness of the proposed solution in a context in which

well-defined policies are defined for the provided resources.

VI. CONCLUSION

REFERENCES

[1] ETSI TS 102 921 v1.1.1. machine-to-machine communica-
tions (M2M); mIa, dIa and mId interfaces. February 2012.

[2] ETSI TS 102.689 v1.1.1. machine-to-machine communica-
tions (M2M); M2M service requirements. August 2010.

[3] ETSI TS 102.690 v1.1.1. machine-to-machine communica-
tions (M2M); functional architecture. October 2011.

[4] M. Ben Alaya, Y. Banouar, T. Monteil, C. Chassot, and
K. Drira. OM2M: Extensible ETSI-compliant M2M service
platform with self-configuration capability. Procedia Com-
puter Science, 32(0):1079 – 1086, 2014.

[5] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The
internet of things: A survey. Comput. Netw., 54(15):2787–
2805, October 2010.

[6] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta.
A survey of middleware for internet of things. In Third
International Conferences, WiMo 2011 and CoNeCo 2011,
pages 288–296, Ankara, Turkey, June 2011.

[7] D. Boswarthick, O. Elloumi, and O. Hersent. M2M Com-
munications: A Systems Approach. John Wiley & Sons, Ltd,
2012.

[8] M. A. Chaqfeh and N. Mohamed. Challenges in middleware
solutions for the internet of things. In 2012 International Con-
ference on Collaboration Technologies and Systems (CTS),
pages 21–26, Denver, CO, May 2012.

[9] H. Feng and W. Fu. Study of recent development about
privacy and security of the internet of things. In 2010
International Conference on Web Information Systems and
Mining (WISM), pages 91–95, Sanya, October 2010.

[10] L. A. Grieco, M. B. Alaya, T. Monteil, and K. K. Drira.
Architecting information centric ETSI-M2M systems. In
IEEE PerCom, 2014.

[11] S. Archer J. McAffer, P. VanderLei. OSGi and Equinox:
Creating Highly Modular Java Systems. Addison-Wesley
Professional, 2010.

[12] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini,
and Imrich Chlamtac. Survey internet of things: Vision, appli-
cations and research challenges. Ad Hoc Netw., 10(7):1497–
1516, September 2012.

[13] R. Roman, J. Zhou, and J. Lopez. On the features and
challenges of security and privacy in distributed internet of
things. Computer Networks, 57(10):2266–2279, July 2013.

[14] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco,
and Alberto Coen-Porisini. Security, privacy and trust in
internet of things: The road ahead. Computer Networks,
76:146–164, 2015.

[15] Rolf H. Weber. Internet of things - new security and privacy
challenges. Computer Law & Security Review, 26(1):23–30,
January 2010.

318

