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Abstract—The detection of malicious nodes still represents
a challenging task in wireless sensor networks. This issue is
particularly relevant in data sensitive services. In this work a
novel scheme, namely GoNe, is proposed, able to enforce data
security and privacy leveraging a machine learning technique
based on self organizing maps. GoNe provides an assessment of
node reputation scores on a dynamic basis and in presence of
multiple kinds of malicious attacks. Its performance has been
extensively analized through simulations, which demonstrate its
effectiveness in terms of node behavior classification, attack
identification, data accuracy, energy efficiency and signalling
overhead.

Index Terms—Wireless Sensor Network, Security, Reputation

I. INTRODUCTION

A Wireless Sensor Network (WSN) is a distributed system
which acquires, stores, and processes information by leverag-
ing multihop wireless connectivity. Due to the nature of the
radio channel and the remote deployment of the nodes, a WSN
is exposed to different kinds of attacks, including the violation
of data, and the injection of network failures (denial of service,
clone, sybil). Once an attack is detected, its action has to be
mitigated and any ill-behaved node has to be isolated. Many
proposed solutions perform an assessment of the nodes, based
on trust and reputation systems [1] [2] [3] [4].

According to [2] and [4] as well as authors knowledge,
no existing work addresses the detection of multiple kinds
of attacks, through a clever analysis of node behaviors, while
guaranteeing the security and privacy of data. Besides security,
WSN are highly constrained in terms of power resources;
regarding this topic, many solutions [5] [6] adopt data ag-
gregation for reducing the amount of transmitted information
and avoiding network congestion. Good Network (GoNe) is
proposed hereby in order to deal with the presented issues.
It detectes and isolates malicious nodes on a dynamic basis,
along and guarantees confidentiality, integrity and anonymity
of the information. Moreover, GoNe adopts the privacy-aware
data aggregation scheme presented in [7] in order to address
congestion control. The reputation technique proposed with
GoNe is based on Self Organizing Maps (SOM) [8], also
known as Kohonen network, which is an architecture con-
ceived for unsupervised neural networks. It presents many
advantages since it requires no supervision, it is relatively fast
and not expensive, also with a high dimensionality of data.

To demonstrate the effectiveness of GoNe, an extensive
simulation campaign has been carried out, revealing that GoNe
exhibits encouraging key performance indexes, such as false
positive/negative rate, data accuracy, energy consumption, and
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packet delay. The rest of the paper is organized as follows: Sec.
IT describes the target scenario; Sec. III introduces the GoNe
protocol; Sec. IV presents simulation scenarios and results,
while Sec. V ends the paper and draws future research.

II. TARGET SCENARIO

The reference scenario is a clustered WSN, based on a
wireless multihop mesh backbone. Each cluster is made of
a variable number of sensors and one mesh router acting as
cluster head (CH), directly or indirectly connected to the sink
through the backbone. Sensor nodes are constrained in terms
of energy and processing resources, while CHs can be assumed
to be grid powered (or with a huge energy availability) and
able to run more complex algorithms. For this reason, sensor
nodes will only perform the sensing and the data encryption
activities; whereas CHs verify the integrity of the received data
and, in case of no violation, aggregate the data according to
the congestion level of the network, as proposed in SETA
[7]. Note that the CHs implement the secure aggregation
scheme also for data coming from different clusters. Finally,
the sink assesses the reputation score of WSN nodes and
detects misbehaving ones. From such distinctions, it emerges
that nodes are characterized by different functions and roles,
following the model presented in [9]. Each node (sensor or
CH) has a set of keys used according to the current function-
role couple [7] (the key distribution scheme is out of the scope
of this paper).

The messages containing the sensed data are denoted by
mp,q Where n indicates the node that generated and transmit-
ted the message; whereas ¢ uniquely identifies the message
among those generated by n. L, denotes the list of the nodes
which forward the data towards the sink. The integrity of trans-
mitted data, also encrypted, is object of a malicious attack,
which should modify the value of the sensed or aggregated
data. A countermeasure is represented by the adoption of
a hashing procedure. The hash of the encrypted sensed or
aggregated data is calculated by the sensor nodes or the CHs
and, then, also the hash is encrypted, to add another security
level and to avoid attacks which can modify both the hash
and the related data [7]. The CHs use such a hash to perform
the data integrity verification. Concerning secure aggregation,
sensor nodes adopt homomorphic stream ciphers [10] which
allow the CH to aggregate data without deciphering them. The
approach presented in this paper adopts data aggregation at
CH level to avoid traffic congestion: when the transmission
queue builds up, data therein are aggregated to keep the queue

358



length under its maximum limit. Note that violated messages
are not considered in the aggregation process. More details
about sensing, integrity verification and data aggregation are
available in [7].

ITII. GONE
A. Inputs

GoNe aims not only at identifying data violations, but also at
detecting the malicious nodes. To this end, a machine learning
engine is used, which allows to isolate misbehaving nodes by
evaluating their reputation. Such a reputation is a value in
the range [0,1], where O is the lowest value (no confidence
is associated to the node), while 1 is the highest value (there
is a complete confidence in the node behavior). To evalutate
the reputation of a node, besides the case of violation of the
content of the packets, its behavior is analyzed, in relation to
network and computing resource usage. As regards network
usage, the inspected features are: number of message received/
generated/ forwarded/ dropped by a node; average packet
arrival time; number of messages received by specific neighbor
nodes. They allow to monitor the unusual traffic in a given
neighborhood. As regards computing resource, the monitored
features are memory and CPU utilization. Such information
are gathered by the nodes themselves, which periodically send
to their CH a packet with the following fields:

Ds.q = (Ns.q, Pr, Py, Py, Pg, Mem, Cpu), where:

Ne,q is the couple (ns, gs), in which ng identifies the sensor
node that generated the packet, while ¢, identifies such a
message among those transmitted by ng (this field is kept
unchanged among transmissions); P, is the number of packets
received by ng until the instant ¢,,, in which such a message
was generated; Py, Py, Py are the number of packets gener-
ated, forwarded, dropped, respectively, by ns until ¢,,; Mem
is the percentage of filling of the node buffer at ¢,; Cpu
is the CPU utilization until ¢,,, measured in MIPS (Million
Instructions Per Second).

In order to guarantee the node anonymity and the confi-
dentiality and integrity of the transmitted information, all the
fields contained in p, , are encrypted with a group signature
[11] shared only with the sink; such a scheme allows the group
(the nodes which belong to the network) to sign the messages
on behalf of the group without revealing node identity; only
the group manager (the sink) can open the signature and
trace the original signer. Another parameter considered by
the sink is the average packets arrival time of the nodes,
indicated as P, 4[k], where k represents the number of nodes
in the considered cluster. All these information, along with the
acquired data, are continuosly received by the sink through the
CHs and sent to the Machine Learning Engine, which is the
responsible of the classification and reputation score evaluation
of the nodes (Fig. 1).

B. Machine Learning Engine

The Machine Learning Engine is composed by: a mecha-
nism of features selection able to process the parameters sent
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Fig. 1. Reputation Score Mechanism Scheme

by the CH; a system for node behavior classification, which
assesses for each node if it is normal, malicious or unknown;
a module in charge of updating the scores associated to the
nodes on the basis of the output of the classification phase. It
is implemented using SOM algorithm and is able to organize
various features in an internal representation; the input layer
takes such features (p, , vectors), as input signals for the
neurons. In the input layer each neuron is directly connected to
all the neurons in the output layer; the ouput layer represents
the reputation score update (Fig. 1). At each algorithm iteration
the weights among input and output neurons are updated; such
an adjustement is a linear combination of input vector and
current weight vector, as showed by the scoring function (Eq.

1):
W(t+1)=W(t)+ Rt)(V(t) — W(t)), where: (1)

W is the weight, ¢ represent the instant time, R is a positive
number less than 1, named learning rate (which decreases
with time), and V is the current input vector. The weights
are initialized with random values between 0 and 1. From the
weights computation, a reputation score rep, is derived for
each sensor node. In the initial phase of the network, rep, are
set to 0.5, which is the average value between the two limits.
Nodes are classified in three categories: Normal when repg is
greater than 0.6, Unknown when rep; is in the range [0.4, 0.6],
Malicious when rep; is less than 0.4. The classification ranges
[0; 0.4) - [0.4; 0.6] - (0.6; 1] have been determined through
simulations, which demonstrated that such ranges optimize the
node classification in terms of false positive/negative rate (Sec.
IV-A).

C. Outputs

At each iteration of the classification phase, once the sink
notices relevant updates in the node reputation, it informs its
cluster members about the changes of confidence towards the
nodes, in order to isolate misbehaving sensors and preserve
the network from data corruption and waste of resources. The
sink adopts a proper type of message to notify the CHs and,
consequently, the CHs have to inform the nodes of their cluster
about the reputation score updates; the message sent by the
CHs to the nodes has the following form:

sr = (1 4, repList[ng][reps]), where:

74,4 1s the couple (r;, ¢;), in which r; identifies the CH which
generated the packet, while ¢; identifies such a message among
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those transmitted by r;(this field is kept unchanged among
transmissions); repList[ns|[reps] is a list of couples node-
reputation, in which ng represents the identifier of a node
belonging to the CH cluster; while rep; is the reputation score
associated with the node. Note that CHs are considered trusty
nodes.

ns has been just encrypted by the sink with the group sig-
nature and forwarded by the CH guaranteeing the end-to-end
anonymity. Each sensor node stores the retrieved information
in its own local table 7', which aims at containing the couples
node-reputation of all the nodes belonging to the same cluster.
Moreover, sensor node verifies the reputation scores stored
in T regarding the nodes which are in the field L,, of each
received message. Also the nodes identifiers contained in L,
are encrypted with the group signature, therefore the nodes
belonging to the network are able to establish the associated
score without decrypting the identifiers. In case of nodes
classified as Normal and/or Unknown, the node processes the
packet in the standard way. Note that, in presence of nodes
classified as Unknown, the CH does not aggregate the data, in
order to preserve the data accuracy, and forwards it to the sink,
which will decide whether to use it or not. Whereas, if almost
a node in the fields L,, is identified as Malicious, then the
packet is immediatly dropped, as well as all the other kinds
of message sent by the malicious nodes, in order to isolate
them from the network. The scope of the learning algorithm
is to minimize, if not avoid, the nodes classified as Unknown.

A key characteristic of SOM is that the neighborhood
nodes participate in the process of adaptation (learning).
For this reason, SOM finds application in many contexts,
such as recognition and identification (medical diagnosis,
face recognition), data mining, monitoring and control (e-
mail spam filtering, vehicle control), forecasting and prediction
(financial applications). In this paper a hybrid architecture is
adopted in order to exploit the advantages of SETA in terms
of congestion control and end-to-end security; however this
reputation mechanism is also suitable for a flat architecture.

IV. PERFORMANCE EVALUATION

This section compares GoNe with SETA [7] and Verifiable
Multilateration (VM) [12] schemes. It will be shown that
GoNe, like SETA, guarantees: privacy, security, congestion
control, data accuracy, as well as acceptable delay and power
consumption. In addition, GoNe, being able to detect malicious
nodes, enhances network performances in terms of resilience
to malicious attacks and allows a better classification of sensor
nodes with respect to VM. GoNe is analyzed in terms of:

o Data accuracy, estimated by means of a comparison
between the environmental temperature estimated by the
sink and the actual temperature (the temperature is a
double in the range [20, 30] generated following the
model adopted in SETA)

o Delay of packets arrival, which represents the time
elapsed between the packet generation at a sensor node
and its reception at the sink
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TABLE I
SIMULATION PARAMETERS

Parameter | Description | Value
N Number of nodes 100, 200
C Number of clusters 3
De. Depth of connections 5
M Percentage of malicious nodes up to 40%
P Interval time of data generation 1s, 2s

Phrrax Max packet size 93 bytes
br Bit rate 250 kbps
[ Cluster Head (CH) buffer size 20 kB
N, CH percentage of buffer size emptying 90%
Qn Node buffer size 10 KB
tg Duration of simulation 1800 s

e Node power consumption, estimated using Energino
models [13]

e Overhead due to the reputation algorithm in terms of
percentage of signalling messages with respect to the total
messages transmitted by the network

o Lost messages: the aim is to estimate how GoNe responds
to certain traffic network attacks, avoiding message losses
in comparison to SETA, which does not cope with such
malicious behaviors

e Number of nodes correctly classified as Normal, Un-
known and Malicious with respect to the secure local-
ization protocol VM; such an evaluation points out also
the false positive/negative rate

« Detection time: the dynamics of node scores is analyzed
too, in order to shed further light on the GoNe behavior

o Evaluation of the best intervals of scores to correctly
classify nodes as Normal, Unknown and Malicious.

To evaluate the performance, the Omnet++ simulator is used
[14]. Parameters and simulated scenarios are summarized in
Tab. L. In order to exploit the header compression gain due to
6LoWPAN standard [15], messages are encapsulated in a IPv6
over IEEE 802.15.4 stack [16]. Several models of attacks are
inserted, such as attacks to data integrity, to resources (DoS
attacks), to routing behavior (wormhole attacks) [17] [18]. The
outcomes are presented for different percentages of malicious
nodes (up to 40% of the total nodes, and, when not specified,
with a percentage of 20%).

A. Simulation results

GoNe SETA

220
20 22 24 26 28 30
Temperature (°C) sensed by nodes

30

22 24 26 28
Temperature (°C) sensed by nodes

Fig. 2. Data accuracy
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As regards the accuracy of the data recevived by the sink
(Fig. 2), for both topologies (100 and 200 nodes), varying
the percentage of malicious nodes, GoNe and SETA grant
a high level of data quality. This result was expected since
GoNe extends SETA functionalities, which already provides
accurate measurements. Without the presence of malicious
nodes, GoNe introduces a slightly higher delay in comparison
with SETA (Fig. 3) due to signalling messages. Whereas,
in presence of malicious behavior, GoNe provides equal or
smaller delays with respect to SETA, thanks to its ability to
isolate malicious nodes. Analogous considerations hold for the
mean energy consumption (Fig. 4).

Fig. 5 shows the effects of the reputation mechanism in
terms of percentage of messages related to the score evaluation
with respect to the total number of packets transmitted over
the network. It emerges that (i) without malicious nodes the
overhead is concentrated at the beginning of the simulation;
(ii) with the increase of malicious nodes the peak overhead is
lowers, but its long term value is higher than before, since
the reputation algorithm needs a certain time to recognize
the malicious behavior. Since SETA does not face attacks
to traffic or resources, an higher percentage of lost packets
with respect to GoNe is expected (Fig. 6). Figs. 7 and 8
show that GoNe remarkably reduces the number of nodes
classified as Unknown with respect to VM. Moreover, GoNe
is able to identify the kinds of attack (data integrity, network
resources, routing protocols), whose percentages are shown in
Fig. 10; they respect the percentage of malicious behaviors
included in the simulation scenarios (approximatively, 40%
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In Fig. 9 the transient score behavior associated to a normal
and a malicious node is analyzed. The algorithm is able to
quickly recognize if a node presents malicious behavior or not
and to gradually stabilise the associated score. Finally, Fig. 11
analyzes the thresholds tested for correctly classify the nodes,
showing that the best ones are those used for all the presented
simulations: 0.4 and 0.6.
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V. CONCLUSION

GoNe protocol has been presented to identify malicious
attacks towards data integrity, network resources and routing
protocols. With respect to previous works, it addresses both
privacy and security issues, adopting a node reputation as-
sessment scheme. GoNe reduces the node energy consumption
since the reputation algorithm does not generate a high over-
head and, isolating malicious nodes, it limits the percentage
of lost packets. For the future, we are planning the integration
of GoNe in an Internet of Things framework.
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