
DEALING WITH ANONYMITY:

A DESIGN PATTERN FOR PRIVACY-AWARE SYSTEMS

ALBERTO COEN PORISINI PIETRO COLOMBO SABRINA SICARI

Dipartimento di Informatica e Comunicazione

Università dell’Insubria

Via Mazzini, 5 - 21100 Varese, Italy

Email: {alberto.coenporisini, pietro.colombo, sabrina.sicari}@uninsubria.it

Nowadays the wide diffusion of applications that handle data referring to individuals requires the definition of ad hoc

mechanisms that aim at protecting citizens privacy.

Anonymity is a fundamental requirement for privacy aware systems, which aims at preventing the identification of

data owners starting from their data.

This paper proposes a design pattern for the definition of anonymity mechanisms built around a previously defined

conceptual model for privacy policies.

1. Introduction

Nowadays privacy is a key issue and has received

increasing attention from consumers, companies, re-

searchers and legislators. Legislative acts, such as

the European Union Directive1 for personal data,

the Health Insurance Portability and Accountabil-

ity Act2 for healthcare and the Gramm Leach Bliley

Act3 for financial institutions, require governments

and enterprises to protect the privacy of their citi-

zens and customers, respectively.

An important requirement for a privacy aware

system consists in introducing mechanisms that aim

at protecting the identity of the individuals whose

data are handled by the system. Data handled by

a system can be categorized into different classes.

Among them, one class includes data that contain

information concerning the private life, political or

religious creed, behavior of individuals. Another class

contains data that describes the identity of individu-

als (e.g., first name, family name, address, telephone,

etc.).

In privacy aware systems only authorized users

can view the existing relationship between data be-

longing to those two classes, while other users may

be able to retrieve data belonging to one of the above

mentioned classes without viewing the existing rela-

tionships.

For example, a hospital information system

stores both health related and personal data of hospi-

tal patients. For diagnostic purposes a hospital doc-

tor is allowed to access both types of data; while

for other purposes such as epidemiology statistics

only health related data should be accessed, that is

it should not be possible to retrieve the identity of

patients. This kind of problem is know as anonymity.

The aim of this work is to propose a domain inde-

pendent solution scheme that drives the construction

of anonymity assurance mechanisms.

More specifically, we propose a design pattern

based on the general UML conceptual model intro-

duced in,4 which drives the definition of mechanisms

that guarantee anonymity and which can be used in

different application scenarios.

The paper is organized as follows: Section 2

shortly summarizes the most important features of

the UML conceptual model proposed in;4 Section 3

introduces the anonymity pattern; Section 4 presents

the application of the pattern to a simple example;

Section 5 discusses the related works; finally Sec-

tion 6 draws some conclusions and discusses plans

for future works.

2. The Privacy model

A privacy policy defines the way in which data re-

ferring to individuals can be collected, processed and

diffused according to the rights that individuals are

entitled to. In the following we summarize the UML

model proposed in4 that describes the main aspects

of privacy according to the EU directive.1

A PrivacyPolicy is characterized by three

classes: User, Data and Action.

User represents an actor either interested in pro-

cessing data or involved by such a processing. Users

are characterized by functions and roles. More specif-

ically, Function represents the job performed by a

user in an application domain, while Role character-



Fig. 1. Privacy Class Diagram

izes users with respect to privacy. Role is extended by

three distinct classes to represent the different roles:

Subject, which is anyone whose data are referred to,

Processor, which is anyone who asks for processing

data by performing some kind of action on them and

Controller, which defines the allowed actions that can

be performed by the processors.

Data represents the information referring to sub-

jects that can be processed by processors. Data is

extended by means of Identifiable data (e.g., family

name, address, phone n.) and Sensitive data (e.g.,

health, religion). The former represents the informa-

tion that can be used to uniquely identify subjects,

while the latter represents information that deserves

particular care and that should not be freely acces-

sible. Data is a complex structure composed of basic

information unit named Field. Field is characterized

by the attribute name that identifies the contained

information, which in turn is described by the at-

tribute content.

Action represents any operation performed by

User (usually Processor). Action has been defined

using an abstract class and it is extended by Obliga-

tion, Processing and Purpose.

Purpose is the reason for which an authorized

processor access data (e.g., marketing, customer sat-

isfaction, evaluate the customer needs). Processing is

any operation or set of operations which is performed

upon data, whether or not by automatic means (such

as collection, recording, etc.), while Obligation is a

set of actions that the processor guarantees to per-

form, after the data have been processed.

Moreover, each action can be recursively com-

posed of other actions. Since in a privacy aware sce-

nario a processing can be executed under a purpose

and an obligation, Processing specifies an aggrega-

tion relationship with Purpose and Obligation.

Figure 1 depicts the aforementioned classes

along with their relationships. Moreover, classes in-

teract among them exchanging information by means

of interfaces.

3. Anonymity

This section illustrates the Anonymity pattern, that

is a basic scheme for preventing the identification of

individuals, starting from their sensitive data.

3.1. Requirements

Several requirements must be taken into account

when defining anonymity assurance mechanisms.5

• Identity mask-

ing. Anonymity enabling mechanisms shall

mask the identity of subjects.

• Usability. An anonymous data set shall be

usable. Extreme solutions such as not releas-

ing any data cannot be accepted. Moreover,



anonymity enabling mechanisms shall not al-

ter the processing actions performed by a

system.

• Performance. Anonymity enabling mecha-

nisms shall minimally alter the overall sys-

tem performances.

3.2. Solution

The proposed solution starts from the classification

of data and users proposed in the conceptual model.

Fig. 2. Extensions of the conceptual model to support

anonymity

Data structure In order to define anonymity, the

data handled by a system need to be suitably struc-

tured. Data are composed of fields that, depending

on their characteristics, are grouped into sensitive

and identifiable subsets. Moreover, a data type may

be characterized by a hierarchical structure com-

posed of other data types possibly classified as sen-

sitive or identifiable.

In order to keep the link between identifiable and

sensitive data we introduce a reference field to the

data structure used for identifiable data. This is done

by means of class RefField, introduced in Figure 2,

which extends class Field of the conceptual model, as

shown in Figure 1. The inherited attributes of class

RefField are used in the following way: the attribute

name is set to the name of data to which it refers,

while the attribute content is set to the value of the

attribute id of the instance of Data to which it refers.

For example, let us consider the definition of

a data structure composed of the fields “family-

Name”, “city” and “disease”. Fields “familyName”

and “city” identify the data owner, while “disease”

represents a sensitive information. As a consequence

two different data types are defined. The former,

named “Person”, is composed of the identifiable

fields, while the latter, named “Health”, contains the

sensitive one. Let us consider the following data sets:

1) “Smith”, “Milan”, “hemicranias”; 2) “Brown”,

“New York”, “gastric ulcer”. Therefore, the first

triplet is represented by an instance of class Identifi-

able in which the attribute name is set to “Person”,

and attribute id is set to “data001”, and by an in-

stance of class Sensitive in which the attribute name

is set to “Health” and attribute id is set to“data003”.

Moreover, “data001” contains an instance of

class Field characterized by the attribute name ini-

tialized to “familyName”, the attribute id initial-

ized to “field001”, and the attribute content set to

“Smith”. It also contains a further Field character-

ized by the attribute name set to “city”, the at-

tribute id initialized to “field002”, and the attribute

content set to “Milan”. Finally, “data003” contains

an instance of Field characterized by the attribute

name initialized to “Disease”, the attribute id ini-

tialized to “field005”, and the attribute content set to

“hemicranias”. In order to represent the link between

identifiable data represented by “data001” and the

sensitive data represented by “data003”, “data001”

contains an instance of RefField in which the at-

tribute name is set to “Health”, the attribute id is

set to “ref001” and the attribute content is set to

“data003”. A graphical description of the structure

of such data is shown by the Composite Structure

Diagram of Figure 3.

Fig. 3. The Composite Structure Diagram that describes the

example

In order to prevent the identification of data

owners starting from their sensitive data, instances of



Identifiable may own references to instances of Iden-

tifiable or Sensitive, while instances of Sensitive can

own only references to instances of Sensitive. In other

words, instances of Sensitive cannot own any refer-

ence to instances of Identifiable.

A second issue that must be taken into account

concerns the possibility that starting from identifi-

able data one can access the asssociated sensitive

data, by following the reference fields. However, the

system should prevent non authorized users of the

system to follow such references, that is there may

be some users that can access identifiable data with-

out being authorized to access sensitive data.

The way in which we prevent non authorized ac-

cesses to sensitive data is based on cryptography.

Notice that at this level we do not need to choose

any particular encryption technique (e.g., public key,

symmetric key, etc.), since the needed extensions of

the conceptual model are independent from encryp-

tion techniques.

Handling cryptography The way in which we in-

troduce cryptography is based on three new classes

(see Figure 2): KeyDistributionCenter, DataKey and

FunctionRoleKey. The class KeyDistributionCenter

manages the generation of the keys usable for en-

cryption purposes. KeyDistributionCenter generates

keys according to the restrictions imposed by the

privacy policy. FunctionRoleKey represents the key

associated with a specific pair Function-Role, while

DataKey represents the key to encrypt the content

of data fields.

In what follows we present the use of the pre-

viously introduced concepts for the definition of

anonymity mechanisms.

Data encryption A key, named DataKey, is gen-

erated to encrypt the value of the attribute content

of the reference fields that refer to instances of sen-

sitive data. As an example, let us consider that for

statistics purposes we need to know how many people

living in Milan suffer from hemicranias. As described

above, such data types are separately defined and a

reference field, named “Health”, is defined on “Per-

son”. Notice that the attribute content of “Health”

is encrypted, and therefore it is not possible to ac-

cess the sensitive data without knowing the key that

is required to decrypt such a field. Notice that al-

though the content of sensitive data is not encrypted,

such data do not provide any reference to identifiable

data.

In order to prevent data inference we assume

that all the instances of data types with one (or

more) reference field have a non null value associ-

ated with attibute content. In this way the fact that

a person has a reference to a sensitive data element

cannot be used to infer that there is some sensitive

information in the system (e.g., health condition),

since the sensitive data element can be empty.

Actions Data can be accessed only by means of ac-

tions (see Figure 2). Actions are expressly built to

be executed by users that belong to a given function-

role pair. In order to guarantee that actions once de-

fined can be only executed by the authorized users,

an authentication mechanism is introduced. More

specifically, a key, represented by the class Function-

RoleKey, is generated and released to the authorized

users.

FunctionRoleKey instances are handled by Key-

DistributionCenter, which provides generation and

secure communication mechanisms like the ones pro-

posed by Kerberos.6 Whenever a user-controller de-

fines a new Action, two keys are generated. The

former key is associated with the pair Function-

Processor that is authorized to execute the action,

while the latter with the pair Function-Controller

that has to supervise the execution. Notice that the

specification of the algorithm to be used for key gen-

eration, and of the communication protocol is out of

the scope of this pattern.

Fig. 4. Extensions of the conceptual model to support ac-

tions management

In order to support encryption a new class

and a new interface are introduced (see Figure 4).

The class, named AnonymityFactoryAction, extends

class FactoryAction, while the interface, named

AnonymityActionBehavior, extends the interface Ac-



tionBehavior.

AnonymityFactoryAction defines three methods:

defRead(), defWrite() and defAction().

defRead()/defWrite() are used to define basic ac-

tions that allow one to read/write data. Since data

fields are encrypted, such actions use keys to access

the data content.

The parameters of defRead()/defWrite() spec-

ify: the name of the data fields, dataField ; the data

type, data; the keys, kd that are required to de-

crypt/encrypt the content of the data fields, and the

identifier of the action id. Such actions represent the

basic constituent parts of complex actions that can

be executed by authorized users. Notice that basic

actions cannot be directly executed.

Controller defines executable (complex) actions

by means of the method defAction(), whose parame-

ters specify the involved basic actions and the users

that are allowed to execute the action. In particu-

lar the parameters of defAction() specify: the action

type, typeId, which expresses whether the action is a

Processing, a Purpose or an Obligation; a list of pre-

defined basic actions, a[] ; the FunctionRoleKey, frk

that identifies the authorized users, and the action

identifier id.

For instance, let us suppose that a researcher

who works in a health care institute is interested to

know how many people living in Milan suffer from

hemicranias. Moreover, suppose that data are orga-

nized by means of the structure described in Figure 3.

Therefore it is necessary to access the fields “city”

and “disease”. The controller, in order to create such

an action, invokes the method defAction() passing as

paremeter an instance of class FunctionRoleKey as-

sociated with the pair Researcher-Processor that is

authorized to execute the action once defined.

Actions can be executed by invoking the method

run() (defined by AnonymityActionBehavior), pro-

viding the key FunctionRoleKey, and the id of User.

Notice that users authentication can be carried out

in different ways. For example, the first task of the

method run() may check whether the function-role

key provided by the user is the same key that was

set at action definition time.

3.3. Consequences

The pattern has the following benefits.

• Privacy. The separation of sensitive data

from identifiable data, and the adoption of

encryption techniques make it more difficult

to associate sensitive data with the identity

of data owners.

• Minimal user involvement. The users are not

required to modify their normal activities.

Notice that the pattern should be applied to

only populated datasets, since it cannot guarantee

anonymity if the population of the dataset is com-

posed only by a single entry.

A not properly defined implementation of this

pattern may suffer from the following weaknesses.

• Usability. A too high granularity level of

encryption mechanisms can undermine the

usefulness of data. As an example, in the

case of database applications, if all the data

entries are encrypted, the resultant dataset

may be hardly used even by authorized

users.

• Overhead and delay. The application of

encryption mechanisms requires adequate

computational resources. Hence, the overall

system performances may worsen, and de-

lays and/or overheads can be generated. In

order to guarantee an adequate level of us-

ability and privacy, it is necessary to balance

the usage of encryption techniques.

4. Example

This section provides a simple example concerning

the definition of a privacy policy for data manage-

ment in the context of a small neurology depart-

ment characterized by the functions of neurologist,

employee and outpatient:

• Outpatients need to be medically assisted.

They request to undergo a medical exami-

nation with the neurologist, and once exam-

ined they pay the fee

• Neurologists examine outpatients, access

and modify their case histories, prescribe

therapies or physical examinations.

• Employees perform bureaucratic activities

such as registering outpatients, making

appointments for medical examinations,

preparing purchase orders and so on.

Data processing is regulated by a policy that

specifies 1) who is allowed to process data, and 2)



what can be done with such data. The system man-

ages different types of data:

• Patient case histories (sensitive data): de-

tailed records on the background of a person

under treatment.

• Identifiable data: identifiable data associ-

ated with patients such as first name, family

name, address, telephone number, etc.

• Administrative data: the status of payments

for medical examinations and treatments.

For example let us consider an outpatient who

needs to contact the department to request an ap-

pointment for a medical examination. The following

scenario sketches the involved actors and the actions:

• An employee makes the appointment for the

medical examination;

• The outpatient goes to the appointment and

is visited by the neurologist;

• The outpatient pays the fee at the payment

office.

The main goal of this example is to show how

it is possible to exploit the conceptual model and

the anonymity pattern for modeling the following re-

quirements:

• The system shall prevent the identification

of individuals starting from their sensitive

data

• The processing actions can be exclusively

executed by authorized users of the depart-

ment information system.

4.1. Modeling privacy

The actors involved in this example are represented

by means of instances of classes User, Function and

Role.

Employees are instances of User characterized

by Function “Employee” and by the role Proces-

sor, since employees process data of the outpatients.

Similarly, neurologists are characterized by Function

“Neurologist” and the role Processor, while outpa-

tients are the owners of data that will be processed

by doctors and employees. Outpatients are character-

ized by the role Subject and no Function is associated

with them.

Actions can be exclusively executed by autho-

rized users of the information system of the neurol-

ogy department. We assume the existence of a key

distribution center and of a key management service

that are able to create and distribute encryption keys

to each pair function-role that operates the system.

Actions affect data of subjects, and thus in order

to allow processing, the interested subjects have to

grant their consent. In what follows we assume that

the outpatients provided the explicit consent to ac-

cess their data. Moreover, we assume the existence

of the following actions:

• “Medical examination reservation”: per-

formed by employees to reserve medical ex-

aminations

• “Update case history”: performed by the

neurologist to modify the outpatient case

history and the prescribed treatment

• “Pay the fee”: performed by the employee

to record the payment of the fee associated

with a medical examination

For space reasons we do not consider the outpa-

tients registration. Hence we assume that the out-

patients that require to be examinated are already

registered.

At definition time, actions were provided with

the name of: 1) the data types and the fields that

are accessed; 2) the keys that are needed to access

encrypted information (i.e., the references to sensi-

tive data and possibly encrypted further fields), 3)

the keys of the pairs Function-Role that are allowed

to execute them. A more detailed description of the

functionalities of such actions is provided later on.

The data managed by the system concern: iden-

tifiable information of the outpatients, information

on the reservation, the cost, the payment and the

case histories of the outpatients (sensitive data).

According to the Anonymity pattern and the

proposed conceptual model, in order to prevent the

identification of individuals starting from their sen-

sitive data, sensitive and identifiable data are sepa-

rately modeled by means of the following data types:

• “Person”: a data type characterized by

fields like “ first name”, “family name”,

“birth date”, “address”, “telephone num-

ber”, which identify an outpatient.

• “Medical examination”: composed of fields

like “data”, “time”, “place”, “examination

type”, “examination report”, which provide



information on the examination.

• “Price list”: characterized by fields such as

“examination type” and “price”, which de-

scribe the price associated with each exami-

nation.

• “Case history”: sensitive data composed of

fields that keep track of the health state of

outpatients and the prescribed treatments.

• “Payment information”: composed of fields

like “total” and “paid” that keep track of

the payment of the examinations.

“Person” is an identifiable data type that stores

references to instances of sensitive data such as

“Medical examination”. Moreover, “Medical exam-

ination” stores a reference to a sensitive data named

“Case history”. Instead “Payment information” and

“Price list” are neither sensitive nor identifiable data.

We assume the existence of a key management

service that generates and stores a new key whenever

a new type of sensitive data is introduced. More-

over, similarly to the action management case, we

assume that all the previously described data types

were defined by an authorized User with the role

of Controller. The generated keys are used to en-

crypt/decrypt the content of the reference fields to

instances of the previously listed sensitive data.

The employee makes an appointment for the

medical examination by invoking the action “Med-

ical examination reservation”. Such action is a com-

plex processing composed of multiple data writing

and data reading basic actions, which affect some

of the fields of “Person”, “Price list” and “Medical

examination”. More specifically, the action accesses

the fields “ first name”, “family name”, “address”,

“birth date”, “telephone number” of “Person” and

the fields “examination type” and “price” of “Price

list”. The action also defines a new instance of “Med-

ical examination” and initializes its fields “data”,

“time”, “place”, “examination type”, “examination

description”. The action is also provided with the

keys that are required to encrypt the content of the

reference field “Medical examination” of “Person”

and of “Payment information”, and “Case history” of

“Medical examination”. Moreover, it integrates the

keys associated with the users that are authorized to

execute the action, that is those characterized by the

pair Employee-Processor.

At execution time the employee invokes the

method run() of the action by specifying, his/her id,

and his/her FunctionRoleKey, the id of the outpa-

tient, the type and the description of the medical ex-

amination, data, time and place of the examination.

The action creates a new instance of “Medical ex-

amination”, characterized by a certain id. The value

of id encrypted with the key of the sensitive data

“Medical examination” is stored in the homonymous

reference of the interested instance of “Person”. The

action creates an instance of “Payment information”

and generates a reference to a “Case history” that is

stored in “Medical examination”. The first data type

specifies the total amount due for the examination.

Notice that the values of id and of the field “total”

are initialized. The reference to “Case History” is

used to store the results of the examination. Notice

that all the other fields are “empty”. The values of

id are encrypted using the key of the sensitive data

“Payment information” and “Case History” and the

resulting values are stored in the homonymous ref-

erence fields of the interested instance of “Medical

examination”. At the end of the execution, the med-

ical examination is booked.

The outpatient provides the id of the reservation

to the neurologist. The doctor, after examining the

outpatient, updates his/her case history by means

of the action “Update case history”. More specifi-

cally, the key associated with the couple Neurologist-

Processor is integrated into the action.

Finally, the outpatient has to pay the fee for the

medical examination. Hence he/she provides the id

of the reservation to the employee. The employee

records the payment by invoking the action “Pay

the fee”. Such action accesses the field “examina-

tion type” of “Medical examination” and the fields

“examination type” and “price” of “Price list”. The

value of the field “examination type” of “Medical ex-

amination” is used to calculate the price associated

with the examination. The resulting amount is used

to update the field “paid” of the involved instance of

“Payment information”.

5. Related works

Anonymity, pseudonymity, unlinkability, informed

consent and unobservability are some of the main

features of privacy aware systems. Such features can

be effectively modeled by means of design patterns,

i.e., general reusable design schemes.



Many security patterns were defined to address

enterprise, architectural and user-level security,7–10

while, at present only few contributions, concern-

ing the privacy domain, have been defined. Chung et

al.10 define privacy patterns for ubiquitous comput-

ing domain. Schummer11 describes the privacy mas-

querade pattern, i.e., pattern that specifies how it

is possible to prevent personal information from be-

ing improperly transmitted. Schumacher12 describes

two privacy patterns, named Pseudonymous Email

and Protection against Cookies, respectively. The

former specifies mechanisms for hiding the sender of

an email message; while the latter describes how to

control the cookies in a web browser. Romanosky

et al.13 introduce privacy pattern for online inter-

actions, distinguishing between pattern for system

architecture issues and pattern for end-user support.

Hafiz5 defines anonymity design patterns for various

types of online communication systems, online data

sharing, location monitoring, voting and electronic

cash management.

All these contributions address specific applica-

tion domain issues, while our solution is general and

it can be applied to different contexts.

6. Conclusions

This paper proposed a general solution, based on the

conceptual model for privacy policies presented in,4

to implement anonymity. The model provides the

conceptual foundations that are required to imple-

ment anonymity, such as the separation of sensitive

from identifiable data, and the classification of roles

and actions. The proposed solution represents a de-

sign pattern for anonymity and it consists in concepts

and guidelines that drive the modeler towards the

definition of privacy aware systems. The solution ex-

tends a part of the conceptual model by introducing

new concepts that aim at supporting those encryp-

tion mechanisms that are necessary for the imple-

mentation of anonymity.

A simple example concerning a neurology de-

partment illustrated the application of the pattern.

The example drives the reader through the classifica-

tion of users and actions, and shows how it is possible

to integrate the encryption mechanisms in order to

define anonymity.

Future works concern the evaluation of the scala-

bility of the proposed solution, i.e., we are interested

in evaluating the application of the pattern to a case
study of realistic complexity. Moreover, we are work-

ing on the definition of additional design patterns for

privacy aware system. More specifically, at present

we are completing the definition of a pattern that

drives the acquisition of informed consent of subjects

for handling their data.

References

1. Directive 95/46/EC of the European Parliament. Of-
ficial Journal of the European Communities of 23
November 1995 No L. 281 p. 31.

2. http://www.hipaa.org.
3. http://www.glba.org.
4. A. Coen-Porisini, P. Colombo, S. Sicari and A. Trom-

betta, A conceptual model for privacy policies, in
Proc. of SEA, (Cambridge (MS), USA, November,
2007).

5. M. Hafiz, A collection of privacy design patterns, in
Proc. of PLoP , 2006.

6. http://web.mit.edu/Kerberos/.
7. M. Schumacher, E. Fernandez-Buglioni, D. Hybert-

son, F. Buschmann and P. Sommerlad, Security Pat-
terns: Integrating Security and Systems Engineering
(John Wiley & Sons, 2006).

8. B. Blakley, C. Heath et al., Technical Guide .
9. C. Steel, R. Nagappan and R. Lai, Core Security Pat-

terns: Best Practices and Strategies for J2EE, Web
Services, and Identity Management (Prentice Hall,
2005).

10. E. S. Chung, J. I. Hong, J. Lin, M. K. Prabaker, J. A.
Landay and A. L. Liu, Development and evaluation
of emerging design patterns for ubiquitous comput-
ing, in Proc. of Designing Interactive Systems, (New
York, NY, USA, 2004).

11. T. Schümmer, The Public Privacy–Patterns for Fil-
tering Personal Information in Collaborative Sys-
tems, in Proc. of Pattern Language (CHI 2004 work-
shop), 2004.

12. M. Schumacher, Security Patterns and Security
Standards, in Proc. of EuroPLoP , 2002.

13. S. Romanosky, A. Acquisti, J. Hong, L. Cranor and
B. Friedman, Privacy Patterns for Online Interac-
tions, in Proc. of PLoP , 2006.


