
Increasing the pervasiveness of the IoT: fog
computing coupled with pub&sub and security

Sabrina Sicari
Dip. di Scienze Teoriche e Applicate
Università degli Studi dell’Insubria

Varese, Italy
sabrina.sicari@uninsubria.it

Alessandra Rizzardi
Dip. di Scienze Teoriche e Applicate
Università degli Studi dell’Insubria

Varese, Italy
alessandra.rizzardi@uninsubria.it

Alberto Coen-Porisini
Dip. di Scienze Teoriche e Applicate
Università degli Studi dell’Insubria

Varese, Italy
alberto.coenporisini@uninsubria.it

Abstract—People are increasingly surrounded by a connected
world, where they can gather and share information everywhere,
at anytime, and by means of a variety of devices, belonging to
the so-called Internet of Things (IoT) network. IoT technologies
and applications are spreading in different scenarios, ranging
from every-day life activities to business ones. The presence
of a huge amount of data, continuously transmitted over the
network, brings relevant issues in terms of scalability. Hence,
a proper network infrastructure must be put in action, in
order to efficiently manage the information. A middleware layer
could be a potential solution for overcoming such an issue, and
to cope with interoperability. In literature, many architectures
have been proposed in the last years, but little attention has
been paid to how to decentralize as much as possible all the
network’s components and tasks, in order to cover a wider area,
avoiding single points of failure, while guaranteeing efficiency.
Moreover, the interest of different stakeholders is not adequately
considered yet. In this sense, fog computing represents a viable
approach, which is adopted in this paper for the realization of
a highly distributed and security-aware IoT middleware, aimed
at operating without the need of a central coordinating unit
and at allowing the participation of multiple stakeholders in
the same IoT infrastructure. The proposed solution exploits
the functionalities provided by the MQTT protocol, and its
potentialities, besides the architectural features, are evaluated
by means of a simple yet real test-bed, in terms of computing
effort and latency.

Index Terms—Internet of Things, Fog Computing, Security,
Privacy, Publish&Subscribe

I. INTRODUCTION

The advent of Internet of Things (IoT) technologies and
applications in a large variety of application’s domains have
a great impact on the network’s infrastructures, which must
be able to efficiently manage the huge amount of data, con-
tinuously provided by IoT devices. Note that heterogeneous
technologies are involved (e.g., WSN, RFID, NFC, actuators)
and they communicate by means of different standards and
protocols. Hence, two main issues naturally emerge: scalability
and interoperability.

To cope with such problems, many architectures have been
proposed in literature in the last years, some of them with a
certain distributed nature, other ones semi-centralized, often
operating with a cloud [1]. Most of them are conceived
as middleware layers or gateways, able to directly interact
with IoT devices, and to transmit data to proper servers or

clouds, for the final processing and sharing with the interested
parties. What does not totally emerge from such approaches
is how much such architectures are distributed, in terms of
coverage area, number of managed sources, amount of data
processed, possible thresholds, and so on. In fact, often the
middleware or the gateways are mentioned as single entities,
which presumably interact with other similar ones, in a not
so clear way. Hence, little attention has been paid, until now,
to how to decentralize as much as possible all the network’s
components (e.g., the middleware’s or gateways’ modules)
and tasks, in order to cover a wider area and make the IoT
environment more pervasive.

In this paper, the raised challenge is faced by adopting
the fog computing principles [2]. In fact, fog computing
mainly consists of a decentralized networking and comput-
ing infrastructure, where data, processing tasks, storage and
applications are distributed in an efficient manner towards
the edge of the network, in an intermediate layer (e.g., a
middleware), situated between the data sources and a cloud
[3]. Fog computing is promoted by the OpenFog Consortium
1, which encourages many initiatives all over the world about
its diffusion in the IoT. The advantages of adopting such a
vision are the following: (i) avoiding single points of failure
(e.g., the cloud); (ii) reducing the amount of data transmitted
to a central entity, which represents a sort of bottleneck; (iii)
reducing the delays of information retrieval, since data are
closer to the final consumers. The main contribution of this
paper is the integration of such features within a security
and privacy-aware IoT-based middleware platform, named
NetwOrked Smart object (NOS) [4]. Such an architecture has
been chosen for two main reasons. Firstly, the authors own the
test-bed, so as to be able to carry out an accurate and concrete
performance analysis. Secondly, NOS is already integrated
with the following security functionalities, also summarized
in Figure 1:

• A novel algorithm for security level’s assessment has
been defined; it is able to perform an automatic evalu-
ation of the information by inferring to the data sources
behavior [4]

1https://www.openfogconsortium.org/



• Proper key management systems are adopted, for securing
the communications among NOSs and involved parties
with the distribution of well-defined encryption keys [5]

• An enforcement framework, based on sticky policies, pro-
vides a set of general-purpose rules aimed at regulating
the access to the IoT resources and controlling the actions
performed by NOSs, in order to react towards possible
violation attempts [6]

• The enforcement mechanism, just presented, has been
integrated with AUPS (AUthenticated Publish&Subscribe
system), a protocol able to effectively manage publica-
tions and subscriptions through Message Queue Teleme-
try Transport (MQTT)2 interactions, securing the infor-
mation sharing with parties interested in the services
provided by the IoT platform [7].

Fig. 1. NOS functionalities

The last feature is the most important for the work proposed
hereby. In fact, MQTT potentialities are coupled, in a new
way, with the fog computing paradigm, in order to obtain a
highly distributed platform, composed by a network of NOSs
and brokers, and able to guarantee high levels of reliability to
the transmitted information, which becomes available within
the IoT network, thanks to the provision of a novel sharing
mechanism. Note that, in [7], the IoT platform was able to
manage only a single broker, which represented a single point
of failure for the system

Another fundamental point is the involvement of different
stakeholders in the IoT infrastructure. This is possible only

2https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

if the IoT network itself allows their participation. In this
work, the brokers, acting as distributed devices in the already
existing NOSs’ fog layer, are in charge of transmitting the
processed data, and can be owned by any organization or
company interested in exploiting the functionalities of the IoT
network to disclose data of interest to their consumers.

The rest of the paper is organized as follows. Section II
presents the state of the art of existing IoT infrastructures.
Section III describes the background on NOS’s platform
and MQTT functionalities. Section IV presents the proposed
approach, which is then assessed in Section V, by evaluating
relevant metrics. Section VI summarizes the outcomes of the
conducted research.

II. RELATED WORK

With the scope of improving the quality of service (QoS),
the authors, in [8], present EMMA, an edge-enabled pub-
lish&subscribe middleware; the main weaknesses of such an
approach is that it requires a controller and a broker that acts as
a server for the client brokers integrated into the gateways, thus
introducing single points of failure in the network architecture.

The work in [9] proposes the adoption of a new kind of
broker, named QEST, which is able to bridge MQTT primitives
and REST interfaces, in order to ease machine-to-machine
interactions. With respect to such an approach, the target of
the paper proposed hereby is a more heterogeneous and dis-
tributed IoT system, not confined to the direct communications
among IoT devices, but where interactions among the different
involved parties are filtered and mediated by a middleware
layer, which is able to perform processing and security tasks.

[10] evaluates the performance of an edge-switch, which
implements some basic MQTT broker functionalities, in a
Software-Defined Networking (SDN) based system. How the
different edge-switches cooperate is not clear as well as it
is worth to remark that SDN still presents some centralized
features.

Security and privacy requirements are not taken into account
by the aforementioned solutions. Instead, works which address
such issues (e.g., by means of the adoption of enforcement
policies) and which make use of MQTT protocol [11] [7] [12],
are based on a centralized broker, which is the obstacle theu
authors want to overcome in this work.

Concerning fog computing, many solutions are currently
inspired to smart health scenarios [13] [14] [15], or to the
Internet of Vehicles (IoV) [16] [17], or even to attacks’
recognition [18] [19]. A preliminary performance analysis is
included in [20], where an IoT application framework, based
on fog computing principles, is integrated with MQTT and
user managed access (UMA). Despite such approaches deal
with end-to-end secure communications, authentication and
authorization, a little focus is paid on how information are
effectively shared once acquired by the IoT platforms.

In order to fill such a gap, the work proposed hereby aims to
couple the fog computing paradigm with secure mechanisms
for data sharing via MQTT, within a highly distributed network
infrastructure, enabling the presence of multiple stakeholders.



III. PLATFORM AND MOTIVATIONS

In this section, the background on NOS’s platform, sketched
in Figure 2, and MQTT is presented.

A. Networked smart object platform

A typical IoT system includes two main entities: (i) the
data sources (i.e., the nodes), which are heterogeneous devices
sending data within the IoT network; (ii) the users, who make
their requests within the IoT network, making use of the
services made available by the IoT system itself. Note that the
users usually access to the IoT services by means of mobile
devices (e.g., smartphone, tablet), which are connected to the
Internet. The distributed IoT platform itself is conceived as a
network of NOSs, which are powerful smart devices, in charge
of managing both data sources and users’ requests.

Interfaces based on HTTP protocol are adopted in the com-
munications among NOSs and nodes (i.e., the data sources).
The sources can establish whether being registered or not to
the IoT platform. In fact, the registration is not mandatory,
but increases the level of protection of the communications,
for example specifying an encryption scheme to send the
information in a ciphered manner. A storage unit, named
Sources, is responsible for storing the data concerning the
registered sources. Instead, each data, provided by a node,
is initially put in the Raw Data storage unit, where the
following information are gathered: a) the type of node, that
describes the type of source; b) the communication mode, that
is, the way in which the data are collected (e.g., discrete or
streaming communication); c) the data schema, that represents
the content type (e.g., number, text) and the format of the
incoming data; d) the data content; e) the reception timestamp.

Periodically (i.e., like a batch), the information collected
in Raw Data are processed by the Data Normalization and
Analyzers modules. Their goal is twofold: (i) obtaining a
uniform representation of the heterogeneous data provided
to the IoT platform; (ii) adding useful metadata regarding
the level of the following security requirements, which are
confidentiality, integrity, privacy and robustness of the authen-
tication mechanism; (iii) adding useful metadata regarding the
level of of the following data quality requirements, which are
completeness, accuracy, precision, and freshness. The security
and data quality assessment follows a set of rules, which are
specified in the Config collection. Further details are available
in [4]. The scope of such a task is to allow users, when
accessing the IoT data, to directly filter them by themselves,
according to their personal preferences.

B. MQTT protocol and motivations

MQTT protocol seems to be a viable solution, in order
to allow the almost constrained devices to asynchronously
communicate within an IoT network. It is lightweight and
event-/message-oriented, and it is able to guarantee small
bandwidth connections among the IoT devices in an easy
manner. In fact, a central broker is responsible to act as
an intermediary with respect to the entities that produce or
consume the data, following a publish&subscribe interaction

Fig. 2. Scheme of NOS architecture

pattern. Information are shared on the basis of the so-called
topics, which represent a sort of categories of the data, made
available within the IoT network. More in detail, NOSs publish
some data under specific topics and users subscribe them for
being notified about the information related to certain topics.

It is worth to remark that the current versions of MQTT
(i.e., v5 and v3.1) do not provide a native support neither
for mutual authentication mechanisms nor for ensuring data
integrity and confidentiality. As a consequence, NOS platform
has been integrated with a security aware MQTT based system
making use of sticky policies. Please refer to [7] and [6] for
further details.

The main issue arises when thinking about the role of the
central broker. It represents a serious drawback of the current
NOSs middleware platform and, in general, of architectural
solutions based on MQTT. In fact, even if the broker allows
to easily share the information to the subscribed parties, it
clearly represents a bottleneck in a wide IoT system, since all
the notifications must be managed by a single entity, possibly



guaranteeing the service in real time. No studies have been
specifically conducted in the literature on the performance of
the broker involved in an IoT system, as revealed in Section
II. The approach, proposed in this paper, includes the presence
of a network of brokers, whose relevant metrics are evaluated
with respect to the same IoT system adopting a single broker
(see Section V). But, it is important to clarify the way how
the fog computing concept is adopted. In fact, a sort of dual
fog layer is put closer to the data sources: the former is
composed by NOSs, which are in charge of acquiring data
from the near IoT devices and perform the security tasks;
the latter is composed by the brokers (whose number can
be established considering the specific application), which
interact both with NOSs and with the end-users. Hence, the
broker is not yet considered a solitary central unit, closer
to a cloud or a server, but a distributed technology, which
contributes to the efficiency of the whole IoT system. Note
that, the presence of the described fog layer should improve
the overall performance of the IoT system, in terms of latency,
since the middleware composed by NOSs and brokers should
speed up the data processing. A scheme of the envisioned
infrastructure is sketched in Figure 3.

At this point, the main issue which arises is how a data
acquired by a NOS, and further transmitted to a broker, can
be transferred by an end-user which is connected to another
broker. Such an aspect and other practical features of the
proposed approach are investigated in Section IV.

Fig. 3. IoT System composed by a dual fog layer, including multiple NOSs
and brokers

IV. INTEGRATION OF FOG COMPUTING AND MQTT
As partially revealed in the previous section, the proposed

solution aims to exploit a hybrid fog layer, composed by both

NOSs and brokers, in order to bring the following advantages
to the IoT network: (i) turning the broker from being a single
point of failure into a network of brokers; (ii) better balancing
the data load to be shared with end-users; (iii) reducing the
delays of information retrieval; (iv) working in a location-
awareness way; (v) giving more robustness to the whole IoT
system; (vi) allowing the presence of multiple stakeholders,
enabled to exploit the IoT network functionalities.

Note that a broker can be conceived as a piece of software,
which is responsible for executing simple operations: receiving
all data, filtering them, establishing who is interested in them
and then publishing the data themselves to all subscribed
users or applications. Hence, a broker does not require to
run on powerful computers or servers, but it can be installed
on devices, such as Raspberry Pi or Arduino. Such a feature
makes it an ideal candidate to be part of a fog layer. The
same, as just introduced in Section III, is for NOSs, which
are intended to be placed within the IoT environment and to
gather information from the near sources. Therefore, a clear
separation is created between data acquisition, performed by
NOSs (along with processing tasks), and data sharing with
users, performed by brokers. In the following, the different
NOSs and brokers involved in the IoT system are identified
by NOS1, NOS2, ...NOSn and br1, br2, ...brn, respectively.
It is worth to remark that the authors decided to not integrate
one broker for each NOS for three reasons: (i) preserve
NOSs power consumption; (ii) avoid turning NOSs into single
points of failure in the whole IoT system; (iii) enabling the
participation of third-party brokers. The proportion between
NOSs and brokers will depend on the specific applications
involved, and it is out of the scope of this work.

A further important requirement to be considered is related
to security. In fact, when a user or an application requires
a service provided by the IoT system, it is supposed that a
session is opened, during which the user/application, identified
by usapp1, usapp2, ...usappn, can obtain the information pro-
vided by a NOS, taking into account the accessible resources.
The resources can be accessed on the basis of the policies
Pdata1

, Pdata2
, ...Pdatan

, defined within NOS enforcement
framework, in the format specified in [6]. All NOSs actuate
the same policies, thanks to the synchronization mechanism
discussed in [21]. As a consequence, all the brokers can
manage the incoming information in compliance with the same
associated policies, regardless of the NOSs with which they
interact. The brokers must also interact with NOSs in order to
establish which subscriptions to accept or deny.

At the initial state of the IoT network, NOSs and brokers
may be associated in such a way that each broker has at least
one connection to a NOS. Moreover, each broker manages the
topics related to the data, which are further managed by the
connected NOS. This depend on the kind of data transmitted
by the sources connected to that NOS. But, what happens
when a data acquired by NOS1, assigned to a certain topic t,
and transmitted by NOS1 itself to the broker br1, is required
(due to a previous subscription) by a user/application usapp2,
connected to broker br2, which does not receive any data under



Fig. 4. Scheme related to the IoT system’s behavior

t? A mechanism for efficiently satisfying such a required infor-
mation’s exchange must be put in action. The simplest solution
would be a sort of flooding approach: the broker br1 notifies all
the other brokers bri of the new published data, so as to make
it available in the whole IoT area, covered by the brokers; or,
as an alternative, each NOS notifies all the brokers belonging
to the IoT network about all the managed information. Clearly,
such solutions are power-consuming and redundant, since the
authors can assume that the data associated to a certain topic t
are not required at all points in the network every time. Hence,
a more viable approach follows the steps listed hereby, which
also summarized in Figure 4:

• When a user or application usappi subscribes to a certain
topic t1 on a certain broker (e.g., br1), the broker itself
inform the connected NOS (e.g., NOS1), which performs
such tasks:

– NOS1 checks if usappi is authorized to access the
data published under the topic t1 (i.e., the check is
executed on the sticky policy associated to the data
under topic t1)

– If yes, br1 is enabled to notify usappi about the
information related to topic t1; if no, the requested
resource cannot be disclosed

– However, NOS1 has to check if it directly manages
the data assigned to topic t1; such a check is per-
formed by using a proper table, named topicsMap,
which is stored in the Config collection (see Section
III) and contains an entry for each couple topics-
NOSs (ti, NOSi)

∗ If the couple (t1, NOS1) exists, some data ac-
quired by NOS1 and published under the topic
t1 will be notified by br1 to usappi, but what
happens if other NOSs process information related
to the topic t1?

∗ In such a case or in case the entry (t1, NOS1)
is not found in NOS1, NOS1 itself must find
the couple or the couples (t1, NOSi), where i is
not equal to 1, and warn the selected NOSi (for
example, NOS2 in Figure 4) about the fact that
it must begin to publish the data related to the
topic t1 towards br1. Finally, topicsMap must be
updated accordingly: as shown in the example of
Figure 4, the couple (t1, NOS2) is added to the
topicsMap on all NOSs; note that such an update
is notified to all NOSs for future requests via the
proper secure MQTT dedicated channel [21], in



order not to compromise the topicsMap’s content.
Some important features, about the just presented mecha-

nism, must be specified:

• NOSs and brokers must be fully decoupled, in the
sense that brokers can be owned by different organiza-
tions/companies, which are interested in exploiting the
functionalities made available by the IoT platform, to
disclose some relevant information to their customers. As
a consequence, a company or organization could deploy
its own broker and connect to the NOSs’ layer (i.e.,
the IoT platform); using the MQTT protocol, no issues
in terms of interoperability arise. Instead, if the broker
were installed on NOSs, the presence of external brokers
would not be possible. Another opportunity for interested
companies/organizations is to hire a broker, provided by
another stakeholders; in this way, a broker may manage
data from various parties

• All the communications taking place within the presented
system are secure, because: (i) users/applications receive
ciphered data under specific permissions, defined at the
subscription phase and already implemented in [6], as
also shown in Figure 1; (ii) NOSs exchange information
among themselves on a HTTPS/SSL channel and also
NOSs and brokers; (iii) the brokers need not to commu-
nicate among each other (in this sense, they are agnostic
of each other), since NOSs are in charge of supervisioning
how information is shared and, thus, coordinating the
brokers’ activities

• NOS and broker communicate by means of MQTT pro-
tocol, via the MQTT client installed on NOS (see Figure
2)

• A NOS can be connected to more than one broker and
vice versa; hence, a many-to-many relationship can be
established among NOSs and brokers.

V. PERFORMANCE ANALYSIS

A preliminary analysis about the feasibility of the proposed
solution is conducted by means of a test-bed, openly acces-
sible at https://bitbucket.org/alessandrarizzardi/nos.git, com-
posed by two instances of NOS (NOS1 and NOS2), running
on two Raspberry Pi platforms, and by a variable number of
brokers (one or two, namely br1 and br2) and data sources,
which virtually run on separated virtual machines, installed on
a personal computer. The interactions with users are simulated
by means of data requests sent to the IoT platform at a certain
rate.

The sources use measures from real-world smart home test-
bed3, acquired by means of installed sensors that collect elec-
tricity data every minute for the entire home [22]. In particular,
data are gathered from smart meter number 2 of Home A,
which include, among the others, electricity consumption data
of: kitchen lights, bedroom lights, duct heater HRV, and HRV
furnace, published under the topics homeA/lights/kitchen (t1),

3http://traces.cs.umass.edu/index.php/Smart/Smart

TABLE I
TEST-BED PARAMETERS

Parameter Value
NOSs 2
Brokers [1, 2]
Sources 4
Topics 4
Data generation rate 10 pck/second
Data request rate 10 req/second
Observation time 24 hours

homeA/lights/bedroom (t2), homeA/HRV/ductheater (t3), and
homeA/HRV/furnace (t4).

Wi-Fi connection is adopted for communications among
the data sources, the MQTT brokers, and NOSs (i.e., the
Raspberry Pi). NOSs modules interact among themselves
through RESTful interfaces; such a feature allows the NOSs’
administrators to add new modules or modify the existing
ones at runtime, since they work in a parallel and non-
blocking manner. Moreover, the non-relational nature of the
adopted MongoDB database allows also the data model to
dynamically evolve over the time. Node.JS4 platform has been
used for developing NOSs’ core operations, MongoDB5 has
been adopted for the data management, and Mosquitto6 has
been chosen for realizing the open-source MQTT broker.
Information is exchanged in JSON format. More details about
the implementation can be found in [4].

The set up of the conducted analysis is summarized in Table
I. The assessed metrics are computing effort and latency. The
storage overhead has just been deeply analyzed in previous
works [6] [21], but it is worth to remark NOSs support a
non-persistent storage of IoT-generated data, since Raw Data
and Normalized Data collections are emptied as the data
are transmitted to the brokers. The same is for the brokers,
which do not need to persistently store IoT-data to continue
their activity. If the IoT system needs to persistently store
the information obtained from the IoT network, a proper
infrastructure (e.g., a cloud) must be involved, but such a
possibility is not considered in this paper, since the main goal
is the introduction of fog computing features within the NOS’s
platform.

Figure 5 shows the average distribution of the CPU load on
the analyzed NOSs and brokers in two different situations: (i)
the IoT system adopting only one broker (i.e., br1); (ii) running
two brokers. The simulated scenario is as follows: (i) sources
send to NOSs data related to the aforementioned topics at a
rate of 10pck/sec; while data requests are simulated as well, at
the same rate, and imply the notification from the brokers; (ii)
t1 and t2 are associated to br1, while t3 and t4 are associated
to br2; (iii) when an external entity requires, for example,
a subscription to t1 towards br2, the procedure presented in
Section IV must be executed only once; then, the system
continues its activity without requiring further adjustments.

4http://nodejs.org/
5http://www.mongodb.org/
6http://mosquitto.org



Fig. 5. Whiskers-box diagram: average CPU load on NOSs and brokers

Even if additional studies, covering larger deployments, are
needed, the results suggest that having more brokers does
not affect, in a relevant way, the performance of the whole
IoT system, despite the presence of two brokers requires the
execution of the tasks presented in Section IV. The CPU load
on NOSs slightly increments, but bringing the advantage to
potentially serving a wide IoT area, making it more pervasive;
while the computing effort on brokers slightly decreases, since
they share the data load.

Considerations are similar for the average time required by
data from their transmission towards NOS to their reception
by the subscribed entities, shown in Figure 6. Note that the
presence of more than one NOS and broker better balances
the data load without transfer the information sharing task to
one centralized broker.

VI. CONCLUSION

The paper has presented an IoT architecture, composed by a
dual fog layer, involving smart powerful devices (i.e., NOSs),
in charge of acquiring, processing and securing IoT-generated
data, and brokers, responsible for disseminating information.
MQTT protocol has been chosen due to its lightweight primi-
tives, which fit the constraints of IoT devices. The middleware
layer, composed by NOSs, has been kept separate from the
brokers’ network for reducing the latency, better balancing the
data load, and allowing the participation of third-party brokers,
so as to encourage interested companies/organizations in the
exploitation of the IoT infrastructure. A preliminary perfor-
mance evaluation has been carried out on a simple yet real
prototype, but in the near future the authors are planning to test
the proposed approach in a wider scenario (e.g., by increasing
the number of users), trying to analyze the correlation among
the number of NOSs and brokers. More in detail, the authors
would investigate how many brokers are required to efficiently

Fig. 6. Whiskers-box diagram: average end-to-end latency

manage the information sharing task, in presence of a certain
number of NOSs (or, also, in presence of a certain number of
topics or data producers/consumers). Also, comparison with
other existing approaches would help in understanding the
differences between the available IoT systems. Finally, the
factors influencing the energy consumption of the different
network’s components will be explored.

REFERENCES

[1] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani,
M. Imran, and M. Guizani, “Internet of things architecture: Recent
advances, taxonomy, requirements, and open challenges,” IEEE wireless
communications, vol. 24, no. 3, pp. 10–16, 2017.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[3] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
and P. A. Polakos, “A comprehensive survey on fog computing: State-
of-the-art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 416–464, 2017.

[4] S.Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, and A. Coen-Porisini,
“A secure and quality-aware prototypical architecture for the Internet of
Things,” Information Systems, vol. 58, pp. 43–55, 2016.

[5] S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini, “Internet of
Things: Security in the keys,” in 12th ACM International Symposium on
QoS and Security for Wireless and Mobile Networks, Malta, Nov 2016,
pp. 129–133.

[6] S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini, “Security
towards the edge: Sticky policy enforcement for networked smart
objects,” Information Systems, vol. 71, pp. 78–89, 2017.

[7] A. Rizzardi, S. Sicari, D. Miorandi, and A. Coen-Porisini, “AUPS: An
open source authenticated publish/subscribe system for the Internet of
Things,” Information Systems, vol. 62, pp. 29–41, 2016.

[8] T. Rausch, S. Nastic, and S. Dustdar, “Emma: Distributed qos-aware
mqtt middleware for edge computing applications,” in IEEE Interna-
tional Conference on Cloud Engineering (IC2E), 2018, pp. 191–197.

[9] M. Collina, G. E. Corazza, and A. Vanelli-Coralli, “Introducing the
QEST broker: Scaling the IoT by bridging MQTT and REST,” in IEEE
23rd International Symposium on Personal, Indoor and Mobile Radio
Communications-(PIMRC), 2012, pp. 36–41.



[10] Y. Xu, V. Mahendran, and S. Radhakrishnan, “Towards SDN-based
fog computing: MQTT broker virtualization for effective and reliable
delivery,” in IEEE 8th International Conference on Communication
Systems and Networks (COMSNETS), 2016, pp. 1–6.

[11] R. Neisse, G. Steri, and G. Baldini, “Enforcement of security policy
rules for the internet of things,” in IEEE 10th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), 2014, pp. 165–172.

[12] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak, P. Aium-
supucgul, and A. Panya, “Authorization mechanism for mqtt-based in-
ternet of things,” in IEEE International Conference on Communications
Workshops (ICC), 2016, pp. 290–295.

[13] S. R. Moosavi, T. N. Gia, E. Nigussie, A. M. Rahmani, S. Virtanen,
H. Tenhunen, and J. Isoaho, “End-to-end security scheme for mobility
enabled healthcare internet of things,” Future Generation Computer
Systems, vol. 64, pp. 108–124, 2016.

[14] A. M. Rahmani, T. N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang,
and P. Liljeberg, “Exploiting smart e-health gateways at the edge
of healthcare internet-of-things: A fog computing approach,” Future
Generation Computer Systems, vol. 78, pp. 641–658, 2018.

[15] C. Thota, R. Sundarasekar, G. Manogaran, R. Varatharajan, and
M. Priyan, “Centralized fog computing security platform for iot and
cloud in healthcare system,” in Exploring the convergence of big data
and the internet of things. IGI Global, 2018, pp. 141–154.

[16] M. Arif, G. Wang, and V. E. Balas, “Secure VANETs: trusted com-
munication scheme between vehicles and infrastructure based on fog
computing,” Stud. Inform. Control, vol. 27, no. 2, pp. 235–246, 2018.

[17] J. Kang, R. Yu, X. Huang, and Y. Zhang, “Privacy-preserved pseudonym
scheme for fog computing supported internet of vehicles,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 19, no. 8, pp. 2627–
2637, 2018.

[18] M.-G. Ionita and V.-V. Patriciu, “Secure threat information exchange
across the internet of things for cyber defense in a fog computing
environment.” Informatica Economica, vol. 20, no. 3, 2016.

[19] A. S. Sohal, R. Sandhu, S. K. Sood, and V. Chang, “A cybersecurity
framework to identify malicious edge device in fog computing and
cloud-of-things environments,” Computers & Security, vol. 74, pp. 340–
354, 2018.

[20] K. S. Aloufi and O. H. Alhazmi, “Performance analysis of the hybrid
iot security model of mqtt and uma,” arXiv preprint arXiv:2005.06595,
2020.

[21] S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini, “Dynamic
policies in internet of things: enforcement and synchronization,” IEEE
Internet of Things Journal, vol. 4, no. 6, pp. 2228–2238, 2017.

[22] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht,
“Smart*: An open data set and tools for enabling research in sustainable
homes,” SustKDD, August, vol. 111, p. 112, 2012.


