
Università degli Studi di Milano
Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis

Strongly Constructive Formal Systems

Mauro Ferrari

Advisors:

Prof. Pierangelo Miglioli
Prof. Mario Ornaghi

ii

Ferrari Mauro
Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano
via Comelico 39, 20135 Milano–Italy
ferram@dsi.unimi.it

Last Revision: July 21, 1997

iii

Acknowledgments

I would like to thank Pierangelo Miglioli who constantly helped me
since my graduation, following and stimulating my research activity.
Moreover, Mario Ornaghi deserves a special thank for many stimulat-
ing discussions.

But, more importantly, I would like to dedicate this thesis to my par-
ents: they gave me the opportunity to make such a wonderful experience.

iv

Contents

1 Introduction and Preliminaries 1
1.1 Introduction . 1
1.2 Preliminaries . 9

1.2.1 Hilbert calculi . 10
1.2.2 Natural Deduction . 12

2 Fundamentals 19
2.1 Formal systems . 19
2.2 Proofs and calculi . 25
2.3 Generalized rules . 28
2.4 Uniformity . 33
2.5 Strongly constructive formal systems 38
2.6 Relations with program synthesis . 41

3 Exhibiting strongly constructive logics 43
3.1 Generalities . 43
3.2 Intuitionistic Logic . 46
3.3 Kuroda Logic . 53
3.4 Grzegorczyck Logic . 55
3.5 Kreisel-Putnam Logic . 58
3.6 Scott Logic . 66
3.7 Harrop Theories . 72

4 Exhibiting strongly constructive theories 79
4.1 Theories with closed evaluation . 79
4.2 Intuitionistic arithmetic . 80
4.3 Generalized induction . 86
4.4 Descending chain principle . 89
4.5 Markov principle . 92

5 A constructive but not strongly constructive formal system 99
5.1 Basic recursion theory . 99
5.2 Notions of representability . 104
5.3 The formal system HA∗ . 112

v

vi CONTENTS

Chapter 1

Introduction and Preliminaries

1.1 Introduction

Since the early researches in modern Logic and the Foundations of Mathematics there
has been a good deal to do with constructive formal systems, which has given rise to
several techniques and results, both on the semantical and the syntactical ground.
In the semantical framework one may find typically model theoretic tools such as the
Kripke Models (see e.g. [Smorynski, 1973, Gabbay, 1981]), and “operational” inter-
pretations such as the ones based on Recursive Realizability (see e.g. [Kleene, 1945,
Kleene, 1952, Troelstra, 1973c, Troelstra and van Dalen, 1988b]): the former allow
to characterize various “constructive” logics and theories according to a style which
is close, under many aspects, to the one involved in the classical model theoretic
treatments; the latter spring from intuitionistic tradition and relate the meaning of
the logical connectives and quantifiers to the theory of Recursive Functions accord-
ing to many variants which allow to interpret a family of number theoretic systems,
including Heyting Arithmetic. As for the syntactical framework, it includes vari-
ous proof theoretic results involving intuitionistic Natural and Sequent Calculi, as
well as Normalization and Cut-elimination Theorems and their relations to the ex-
plicit definability and the disjunction property, more generally, to the subformula
property (the reader is referred to [Prawitz, 1965, Prawitz, 1971, Troelstra, 1973b,
Girard et al., 1989] for a discussion about Natural Calculi and Normalization, and
to [Takeuti, 1975, Girard, 1987, Girard et al., 1989] for a discussion about Sequent
Calculi and Cut-elimination).

However, several links can be found between the two areas, which give a “proof
theoretic flavour” to many approaches to constructive semantics and a “semantical
flavour” to constructive proof theory. In this sense, the above quoted Recursive

1

2 Chapter 1. INTRODUCTION AND PRELIMINARIES

Realizability interpretations entangle algorithmic (operational) aspects recalling the
typical syntactical manipulations (according to Kreisel, the General Theory of Syn-
tax is Recursiveness Theory, while the General Theory of Semantics is Set The-
ory). But, more than this, other constructive interpretations of logical formulas
have been proposed in the very spirit of the founders of Intuitionism, such as the so
called Intended Interpretation of Brouwer and Heyting, or the BHK interpretation
described in [Troelstra, 1977], which is a more formalized (even if still lacking for-
malization) version of the former: such interpretations are based on a semantical (or
even epistemic) notion of proof, i.e., the so called “intuitive proofs”, which are seen
as constructions providing immediate evidence of the validity of logical formulas.
Also, attempts of singling out an operational interpretation of the logical constants
involved in the introduction-elimination mechanism of Natural Calculi have been
made by Prawitz on the basis of proof theoretic notions such as the Inversion Prin-
ciple and the Strong Validity of proofs; in this context, the syntactical notion of
normalized proof has been proposed as the formal explanation of a semantical no-
tion of intuitive proof such as the one involved in the Intended Interpretation and
in the BHK interpretation (see [Prawitz, 1977, Prawitz, 1978]). Further approaches
with impressive interconnections between proof theoretic and semantical aspects,
which in the recent years have given rise to important applications in Computer
Science, are the so called Formulae as Types Paradigm, based on the Curry-Howard
isomorphism (see e.g. [Howard, 1980]) and (on a more ambitious ground involving
also the Foundations of Mathematics) the Theory of Types of Martin Löf (see e.g.
[Martin-Löf, 1984]). Finally, in a more philosophically oriented attitude, Dummett’s
Theory of Meaning provides an interpretation of intuitionistic logical constants which
(like the previously discussed approach of Prawitz) is concerned with an interpreta-
tion of a semantical notion such as the one of intuitive proof in terms of a syntactical
notion of formal proof ([Dummett, 1977]).

The above approaches (apart perhaps from the Kripke Models, which have a dif-
ferent style of interpretation and are applied also to intermediate and modal logics
which cannot be considered constructive) correspond to (more or less wide) “oscil-
lations” around an intuitionistic paradigm, and can be included in some “extended
intuitionistic tradition”. As such, they have given rise to a contraposition of two
notions of constructive formal system. On the one hand a notion of “good” construc-
tive formal system is involved, intended as a formal system not only satisfying the
disjunction and the explicit definability properties, but, much more importantly,
fulfilling some further (syntactical and/or semantical) requests in agreement with
acknowledged paradigms; on the other hand, the existence of a “naive” notion of
constructive formal system is stressed, according to which a formal system can be
considered constructive if it satisfies the above quoted properties of explicit defin-
ability and disjunction, without any further qualification (for propositional systems
only the disjunction property is required). In this framework, any “constructivist
with a good paradigm” agrees that the two above properties involving the disjunc-
tion connective and the existential quantifier are necessary in order that a formal

1.1. INTRODUCTION 3

system be constructive; but he is aware that such properties alone do not uniquely
determine (even in presence of strong assumptions) any formal system. In other
words, everyone who is engaged in a well founded notion of constructivism considers
naive constructivism as a source of too many and too under-characterized formal
systems, which, as such, are scarcely interesting.

Now, we believe that naive constructivism should deserve more attention; we look
at it as a possible point for a fresh start. After all, the disjunction property and the
explicit definability property are important. For instance, suppose that the addition
of some non classical logic L (intended as a deductive apparatus) to a first order
theory T provides a constructive (in the naive sense) and recursively axiomatizable
formal system T+L; suppose that T is classically consistent and that the set of the-
orems of T+CL includes the one of T+L, where T+CL denotes the formal system
obtained by adding to T classical logic CL (i.e., using CL as the deductive apparatus
of the system, whose mathematical axioms are provided by the formulas of T); sup-
pose also that T has a (uniquely determined up to isomorphisms) isoinitial model M
(in the classical sense), that is, a modelM which can be isomorphically embedded in
a unique way in every model of T (for a detailed discussion about the notion of isoini-
tial model and its relation with the problem of Abstract Data Types in Computer
Science see e.g. [Bertoni et al., 1983, Bertoni et al., 1984, Miglioli et al., 1994a]);
suppose that the isoinitial model of T is reachable, that is every element of its do-
main is denoted by a closed term of the language; finally suppose that every closed
term t can be reduced to a normal form term tN (that is t =tN holds in every model
of the theory), that any normal term tN1 cannot be reduced to any normal term tN2
different from tN1 , and that the set of normal terms is recursive. Now, let a formula
such as

∀x1 . . .∀xn∃!yA(x1, . . . , xn, y)

be provable in the system T + L; then, from the constructivity of T + L (even if
in the naive sense), its axiomatizability, and the properties of the closed terms in
normal form, we get the following fact:

• Let f(x1, . . . , xn) be the function whose domain is the set of all the n-tuples
of terms in normal form of the system, and such that, for every n-tuple
〈tN1 , . . . , tNn 〉 of such terms, f(tN1 , . . . , tNn) is the unique normal term tN such
that A(tN1 , . . . , tNn , tN) is provable in T+L. Then f(x1, . . . , xn) is a computable
function; moreover, an algorithm to compute f(x1, . . . , xn) can be extracted
from the formal system T + L.

Situations of this kind are rather complex from the semantical point of view,
since, presumably, the function f(x1, . . . , xn) is interesting as a function in the frame-
work of a classical model of T (it is a function of the kind Dn → D, where D is
the domain of the isoinitial model M) turning out to be recursive and requiring,
to be computed, a constructive subsystem T + L of the classical system T + CL.

4 Chapter 1. INTRODUCTION AND PRELIMINARIES

Hardly, we believe, these kinds of examples, crossing the contraposition of classi-
cal (non constructive) systems versus constructive systems, can be dealt within the
paradigms of the “extended intuitionistic tradition” quoted above (in the previous
example we have a simultaneous presence of a classical semantics and a “construc-
tive”, even if naive, proof theory). Nevertheless, these situations are extremely
interesting for people working in areas such as Program Synthesis, or Abstract Data
Type Specification, or Program Synthesis together with Abstract Data Type Speci-
fication (for a better analysis of examples such as the above, we refer the reader to
[Miglioli et al., 1988, Miglioli et al., 1994b], where the classical notion of isoinitial
model, considered as the intended model of an Abstract Data Type Specification, is
combined with constructive proof theoretic notions).

Examples such as the above introduce a different kind of paradigm, which is, so
to say, more “formalist” than the previously discussed ones concerning the extended
intuitionistic tradition; indeed, such a paradigm directly involves the contraposition
informal versus formal. From this point of view, presumably, the main property to
be assured by a computer scientist using logical formulas to specify programs, i.e.
functions to be computed, is the computability itself of the involved functions, and
this is simply guaranteed by the good quality (i.e. effectiveness, which corresponds
to recursive axiomatizability) of the formalization of the logical framework in hand,
together with the fulfillment of two purely formal requirements such as the disjunc-
tion property and the explicit definability property (which only entangle the very
notion of calculus, intended as an algorithm to enumerate formulas).

Thus (as in any formalist attitude), the formalist constructive paradigm we are
discussing is largely independent of semantical notions (even if the latter are more
or less linked with syntactical, proof theoretic concepts). Of course, it does not ex-
clude the possibility of being used in connection with semantical treatments; but it
does not necessarily require the presence of some “orthodox” constructive semantics
(in our previous example involving the isoinitial models, the underlying semantics
is classical). More than this, in the most constructive approaches to program syn-
thesis, this paradigm fits very well with acknowledged paradigms of constructive
semantics, to the point that one might look at it as a particular form of the latter
(in this perspective, according to us, one can explain the great success in Computer
Science of the Formulae as Types Paradigm and of the Theory of Martin-Löf); how-
ever, we believe that the formalist constructive paradigm deserves to be analyzed on
its own right, and that the possibility of any necessary connection with some well
defined semantical framework is to be justified by this analysis, taking into account
the needs of massive practices such as the ones involved in Computer Science rather
than some a priori fixed point of view.

Now, the present Thesis is an attempt of giving some contribution to the analysis
of the formalist constructive paradigm. What is involved here is the “algorithmic
content” of recursively axiomatizable formal systems with the disjunction property
and the explicit definability property, and the possibility of reasonably distinguishing

1.1. INTRODUCTION 5

the “global” algorithmic content from the “local” one.
To be more precise, let us come back to the previous example in the framework of

isoinitial models. Even if the function f(x1, . . . , xn) there described is computable,
a key point is: which parts of the involved formal system are necessary in order
to compute, for every input value 〈tN1 , . . . , tNn 〉, the required term in normal form
tN = f(tN1 , . . . , tNn) ? At first, one can see that the whole formal system can be
used as an algorithm to make such computations: indeed, one can define a recur-
sive enumeration of all the theorems of the system, so that, given any input value
〈tN1 , . . . , tNn 〉 for the function, one can start with the enumeration and successively
generate provable formulas, until a formula of the form A(tN1 , . . . , tNn , tN) is reached;
the term tN is the desired result of the computation. However, such a global algo-
rithm generally involves an “horrendously complex” enumeration of formulas and
cannot be considered satisfactory at all. Moreover, the algorithm does not use the
information contained in any proof of the formula ∀x1 . . .∀xn∃!yA(x1, . . . , xn, y). In
this framework, from an intuitive point of view, one naturally looks at those formal
systems which are equipped by calculi where any proof of a formula such as

∀x1 . . .∀xn∃!yA(x1, . . . , xn, y)

contains sufficient information (and this information can be extracted from the
proof) to compute the associated function for every input value; likewise, one is
interested in extracting, from any proof of a formula such as

∀x1 . . .∀xn(B(x1, . . . , xn) ∨ ¬B(x1, . . . , xn)) ,

the whole information needed to decide, for every n-tuple 〈tN1 , . . . , tNn 〉 of closed
terms in normal form, whether B(tN1 , . . . , tNn) holds or ¬B(tN1 , . . . , tNn) holds. Sys-
tems satisfying these intuitive requirements can be viewed as systems with a good
local algorithmic content.

The aim of our Thesis is to formally define the intuitive notion of “formal sys-
tem with a good local algorithmic content”, and to precisely explain how one can
extract the related “local information”; we will call strongly constructive such sys-
tems. In our treatment a strongly constructive formal system will be nothing but a
formal system with local properties of disjunction and explicit definability, which can
be intuitively so explained: there is a presentation (calculus) for the formal system
such that every proof in the calculus of a (closed) formula such as A ∨ B contains
sufficient information to build up (without any “essential” reference to other parts
of the calculus) a proof of A or a proof of B (belonging to the calculus); and the
like for a (closed) formula ∃xA(x).

Our notion of strongly constructive formal system intends also to give a contri-
bution to formally explain the meaning of expressions such as “proofs-as-programs”
in the following sense: any recursively axiomatizable formal system with global (but
not necessarily local) properties of disjunction and explicit definability can be looked

6 Chapter 1. INTRODUCTION AND PRELIMINARIES

at as a universal algorithm allowing to compute all the functions provably definable
in it, but its proofs cannot be considered (in absence of stronger properties) algo-
rithms (programs) to compute such functions; on the contrary, there are appropriate
strongly constructive presentations (calculi), where proofs (of suitable formulas) di-
rectly work as programs. Only calculi conforming to such a paradigm of the proofs-
as-programs are reasonable candidates, we believe, to be used for program synthesis.

One of the main results about the “computational content of proofs” is, without
any doubt, Prawitz’s Normalization Theorem [Prawitz, 1965, Prawitz, 1971]. In the
framework of Intuitionistic Arithmetic this result has a clear computational meaning
and can be considered one of the most interesting “implementations” of the proof-
as-programs paradigm. To briefly discuss this role of Normalization, we suppose to
have a proof πt in the Natural Deduction calculus for Intuitionistic Arithmetic of a
closed formula of the kind ∃zA(t, z) (where t is a closed term of the language LA of
Intuitionistic Arithmetic). We represent this proof as

πt

∃zA(t, z) ,

that is, πt is the proof-tree whose top-formula is ∃zA(x, z). In general, this proof does
not contain a subproof of some formula A(t, t′), with t′ a closed term of LA. But, as
a consequence of the Normalization Theorem [Prawitz, 1965, Troelstra, 1973b], the
proof πt can be normalized in a finite number of steps, giving rise to a proof π∗t of
the kind

π∗t ≡

π′t
A(t, t′)

∃xA(t, z)
I∃ ,

where t′ is a closed term of LA and π′t is a normalized proof of the closed formula
A(t, t′). Similarly, if τt is a proof in the Natural Deduction calculus for Intuitionistic
Arithmetic of the closed formula B(t) ∨ ¬B(t), that is τt is

τt

B(t) ∨ ¬B(t) ,

we have that this proof, in general, does not contain a subproof of the formula B(t)
or a subproof of the formula ¬B(t); but normalizing it, we obtain, in a finite number
of steps, a proof τ∗t which has one of the following two forms:

τ∗1t ≡

τ ′t
B(t)

B(t) ∨ ¬B(t)
I∨ τ∗2t ≡

τ ′′t
¬B(t)

B(t) ∨ ¬B(t)
I∨

,

where τ ′t is a normalized proof of the closed formula B(t) and τ ′′t is a normalized
proof of the closed formula ¬B(t).

1.1. INTRODUCTION 7

According to these examples, we can consider an open proof π(x) of the open
formula ∃zA(x, z), where x is the only free variable, as a program to compute the
recursive function fπ(x), from closed terms of LA into closed terms of LA, defined
as follows:

• For any closed term t of LA, fπ(t) is the normal form of the closed term t′ of
LA such that the normalized proof π∗t contains the proof π′t of A(t, t′) as an
immediate subproof.

Similarly, we can consider an open proof τ(x) of the open formula B(x) ∨ ¬B(x),
where x is the only free variable, as a program to decide the predicate pτ (x) on
closed terms of LA, defined as follows:

• For any closed term t of LA, pτ (t) is true if the normalized proof τ∗t contains
the proof τ ′t of B(t) as an immediate subproof (that is τ∗t is τ∗1t), and pτ (t) is
false if the normalized proof τ∗t contains the proof τ ′′t of ¬B(t) as an immediate
subproof (that is τ∗t is τ∗2t).

This should explain how Normalization interprets proofs as programs. A deeper
discussion on the advantages and the limits of Normalization as a mechanism to
extract computationally relevant information from proofs is out of the scope of this
Thesis (for a more extensive discussion, see [Miglioli and Ornaghi, 1981]). The as-
pect we want to point out here is that the framework where the Normalization The-
orems hold is too narrow, essentially coinciding (disregarding the non-constructive
classical systems) with a family of purely intuitionistic calculi. In this sense, taking
the normalizable calculi with the disjunction property and the explicit definability
property as the only strongly constructive ones, the assertion that there are formal
systems which are not strongly constructive, yet satisfying the disjunction property
and the explicit definability property, becomes quite trivial.

On the contrary, there is a great number of formal systems which are, according
to us, quite reasonable candidates to be included in the strongly constructive ones,
even if no presentation (calculus) for them can be reasonably seen as normalizable.
Systems of this kind contain interesting mathematical principles which hardly can
be handled in an attitude oriented to normalization, even if they have, without any
doubt, a clear algorithmic content, giving rise to proofs interpretable as programs
which cannot be simulated by proofs interpreted as programs by Normalization in
the framework of intuitionistic systems. Also, a lot of interesting axiom-schemes
of intermediate predicate logics with the disjunction property and the explicit de-
finability property should be excluded from the realm of strong constructiveness,
even if their algorithmic content is quite analyzable in local terms (the use of extra-
intuitionistic logical principles in constructive program synthesis is rather restricted
nowadays, but a more extensive field of applications might put into evidence their
relevance; after all, we are at the very beginning of a serious development of program
synthesis from constructive proofs).

8 Chapter 1. INTRODUCTION AND PRELIMINARIES

Thus one of our goals is to widely extend the field of applications of techniques
such as normalization or cut-elimination, yet providing a good paradigm of proofs-as-
programs. Our approach is directly inspired by a notion of extraction of information
(differently from the normalization approach, where the claimed goal is to delete the
detours, i.e. to transform the proof into a very regular proof of the same formula,
while the possibility extracting information from the normalization process looks
like a kind of by-product). In this line, proofs (finite sets of proofs) of strongly
constructive formal systems are seen as an implicit amount of information to be
made explicit (to be extracted, or executed, or handled) by suitable external mech-
anisms, called generalized rules, which do not introduce any essentially new pieces
of information with respect to the ones involved in the proofs to which they are
applied. By means of our generalized rules, whose behavior is ruled by bounds on
the logical complexity of the information they can extract, we also aim to introduce,
even if in a very initial stage, some tools to measure a kind of abstract complexity
involved in the extraction of information from proofs. In this framework our results,
according to which there are recursively axiomatizable formal systems which satisfy
the disjunction property and the explicit definability property but are not strongly
constructive, seems to be of some interest; surely, much more interesting than the
circumstance that there are formal systems with the disjunction property and the
explicit definability property which cannot be presented in the form of normalizable
calculi.

The Thesis is organized as follows. In the remainder of this Chapter we present
the preliminary definitions, and the two main calculi we will use in the following
Chapters, that is, an Hilbert-style calculus and a Natural Deduction calculus for
intuitionistic logic. In Chapter 2, we will develop the fundamental notions of for-
mal system (Section 2.1), of proof and calculus (Section 2.2). This material is not
standard, since we aim to abstract from the usual definitions of proof and calculus
referred to a particular proof-theory, and to develop the notions of strongly con-
structive formal system and of calculus from an abstract point of view. Central
notions of the Thesis are the ones of generalized rule R and the connected notion
of R-subcalculus, developed in Section 2.3. Generalized rules will constitute the
information extracting mechanism of our approach, and the notions of uniformity
developed in Section 2.4 intend to formalize the, so to say, effectiveness of the in-
formation extracting mechanism. Finally, in Section 2.5 the definitions of strongly
constructive calculus and of strongly constructive formal system are provided. In
Chapter 3 and in Chapter 4 we develop several examples of strongly constructive
logics (formal systems without mathematical axioms) and theories respectively. The
examples we provide are not intended to be an exhaustive presentation of strongly
constructive formal systems, but only an illustrative presentation of some formal
systems. The choice has been made so as to present several different techniques for
proving that a system is strongly constructive. In particular, we remark that, for
some of the examples of Chapter 4, some model-theoretic considerations on the sys-
tems in hand are required to prove their strong constructiveness. Finally, in Chapter

1.2. PRELIMINARIES 9

5, to complete our foundational analysis of the notion of strongly constructive for-
mal system, we provide an example of a system with the disjunction and the explicit
definability properties but failing to be strongly constructive.

1.2 Preliminaries

The set theoretic notation applied in this thesis is standard. In particular the sym-
bols ∈, 6∈, ⊆, ⊂, ×, ∩, ∪ have their customary meaning. The difference of two sets
X and Y will be denoted by X \Y; the Cartesian power X×X× . . .×X, with the
set X being taken n times, is written Xn. We shall use ⊂ as the proper part of ⊆.
Occasionally we shall write X ⊇ Y and X ⊃ Y instead of Y ⊆ Y and Y ⊂ Y. A
similar notational convention will be applied to partial ordering relations denoted
by ≤ and <. We will denote with ∅ the empty set and with Pow(X) the power
set of X. A distinguished notation will be used for finite sets, namely Powfin(X)
will denote the set of all the finite sets belonging to Pow(X) and Y ⊆fin X will
mean that Y ⊆ X and Y is finite. Finally, we denote with N the set of the natural
numbers.

In this thesis we will consider (first order) languages built on the logical alphabet
consisting of the propositional constant ⊥, the propositional connectives ¬,∧,∨,⇒,
the quantifiers ∀ and ∃, and a denumerable set of individual variables, denoted by
x, y, z, The set of terms and the set of well formed formulas (formulas for short)
of the language LA, based on the extra-logical alphabet A, are defined as usual. We
will also write A ∈ LA to mean that A is a formula of the language LA. We denote
with L the pure first order language based on the extra-logical alphabet consisting,
for every n ≥ 0, of a denumerable set of n-ary predicate variables p

(n)
j , q

(n)
j , We

will use lower case Latin letters t, s, t′, s′ and upper case Latin letters A,B, C, . . .,
possibly with indexes, to denote terms and formulas respectively. Upper case Greek
letters Γ,∆,Θ, . . . (possibly with indexes) will be used to denote sets of formulas.

The notions of free and bounded individual variable, of closed and open term
and formula are defined as usual. Notations such as A(x1, . . . , xn) and t(x1, . . . , xn)
(with n ≥ 1) will indicate that x1, . . . , xn may occur free in the formula A and in
the term t respectively, while FV(A) will indicate the set of all the free variables
occurring in the formula A.

A substitution of individual variables is any function θ from the set of all the in-
dividual variables to the set of terms of the language in use. Given any individual
substitution θ and any formula A (any term t), we will denote with θA (θt) the
expression obtained by substituting each free occurrence of any free variable in A
(in t) with the term associated with it by the substitution θ. If A(x1, . . . , xn) is a
formula and t1, . . . , tn are terms of the language, we write A(t1/x1, . . . , tn/xn) to
mean the formula obtained by simultaneously substituting any occurrence of x1 in
A with the term t1 and . . . and any occurrence of xn in A with the term tn. Us-

10 Chapter 1. INTRODUCTION AND PRELIMINARIES

ing the substitution applied to formulas, we tacitly assume the terms to be free for
the variables of the formula (similarly, since we regard formulas differing only in
the name of the bounded variables as isomorphic, we can assume that a suitable
renaming of bounded variables is carried on). If Γ is a set of formulas, θΓ will de-
note the set containing the formula θA for any A ∈ Γ. Finally, if θ associates with
every variable a closed term of the language, we say that θA is a closed instance of A.

We define the degree of a formula A as usual. That is:

1. dg(A) = 1 if either A is atomic or A ≡ ⊥;

2. dg(¬A) = dg(A) + 1;

3. dg(A) = Max{dg(B),dg(C)}+ 1 if A is B ∧ C, B ∨ C or B ⇒ C;

4. dg(A) = dg(B) + 1 if A is either ∃xB(x) or ∀xB(x).

The degree of a set of formulas Γ is:

dg(Γ) = Max{dg(A) : A ∈ Γ} .

Finally, we remark that in Chapter 2 we will use the notions of recursive set
and recursively enumerable set, and some fundamental results of recursion theory,
without giving an explicit definition of these concepts. However, the reader can find
a detailed presentation of all this material in Section 5.1.

Now, we present the calculi which we will use in this thesis.

1.2.1 Hilbert calculi

Here, we present the Hilbert-style calculi for intuitionistic and classical first-order
logics. A detailed description of these kinds of calculi can be found in [Kleene, 1952,
Troelstra and van Dalen, 1988a]. The Hilbert-style calculus HINT for intuitionistic
logic consists of the following axioms and rules.

Axioms for conjunction:

Ax1 A ∧B ⇒ A
Ax2 A ∧B ⇒ B
Ax3 A ⇒ (B ⇒ (A ∧B))

Axioms for disjunction:

Ax4 A ⇒ A ∨B
Ax5 B ⇒ A ∨B
Ax6 (A ⇒ C) ⇒ ((B ⇒ C) ⇒ (A ∨B ⇒ C))

1.2. PRELIMINARIES 11

Axioms for implication:

Ax7 A ⇒ (B ⇒ A)
Ax8 (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))

Axiom for intuitionistic contradiction:

Ax9 ⊥ ⇒ A
Ax10 A ∧ ¬A ⇒ ⊥

Axioms for existential quantifier:

Ax11 A(t/x) ⇒ ∃xA(x)
Ax12 ∀x(A(x) ⇒ B) ⇒ (∃xA(x) ⇒ B)

where in the last axiom x 6∈ FV(B).

Axioms for universal quantifier:

Ax13 ∀xA(x) ⇒ A(t/x)
Ax14 ∀x(B ⇒ A(x)) ⇒ (B ⇒ ∀xA(x))

where in the last axiom x 6∈ FV(B).

Rules:

A A ⇒ B

B
Mp

A(x)

∀xA(x)
Gen

An Hilbert-style calculus HCL for classical logic can be obtained by replacing
the axiom for intuitionistic contradiction (A9) with the axiom

Axiom for elimination of double negation:

Ax15 ¬¬A ⇒ A

A proof of HINT (of HCL) is any finite sequence of formulas B1, . . . , Bn such that,
for any i with i = 1, . . . , n, either Bi is an instance of an axiom scheme or it is
obtained by applying Mp to two formulas A ⇒ B and A which occur before in the
sequence, or it is obtained by applying the rule Gen to a formula A(x) which occurs
before in the sequence. If B1, . . . , Bn is a proof in HINT (HCL) we say that the
formula Bn is provable in HINT (HCL) and we write `HINT

Bn (`HCL
Bn).

If we also permit assumptions, we say that A is provable in HINT (H) from Γ
(where Γ is a finite or infinite set of formulas), and we write Γ `HINT

A (Γ `HCL
A),

if there exists a finite sequence B1, . . . , Bn of formulas such that: for any i with
i = 1, . . . , n, either Bi is an instance of an axiom scheme, or Bi ∈ Γ, or or it is
obtained by applying Mp to two formulas A ⇒ B and A which occur before in the

12 Chapter 1. INTRODUCTION AND PRELIMINARIES

sequence, or it is obtained by applying the rule Gen to a formula A(x) which occurs
before in the sequence, with the restriction that x 6∈ FV(Γ).

A subproof of a proof λ ≡ B1, . . . , Bn in HINT (with assumptions or not) is any
subsequence C1, . . . , Cm of λ which is a proof of HINT (HCL). The degree dg(λ)
of an Hilbert-style proof λ ≡ B1, . . . , Bn of the formula Bn from Γ is the maximum
between the degrees of the formulas in λ. That is

dg(λ) = Max{dg(B1), . . . ,dg(Bn)} .

1.2.2 Natural Deduction

We present here a syntactic variant (inspired to the one presented in [Gallier, 1991])
of the natural deduction systems for intuitionistic and classical first order logic due
to Gentzen [Gentzen, 1969] and Prawitz [Prawitz, 1965]. Here, the logical alphabet
does not include the connective ¬, that is ¬A is taken as an abbreviation for A ⇒ ⊥.

We call sequent an expression of the kind Γ `̀̀ A, where A is a formula and Γ is
a finite set of formulas. For the sake of simplicity, we use the following conventions:
Γ,∆ `̀̀ A abbreviates Γ ∪∆ `̀̀ A, A `̀̀ B abbreviates {A} `̀̀ B and `̀̀ A abbreviates
∅ `̀̀ A. Moreover, we call initial sequent or axiom sequent any sequent of the form
A `̀̀ A.

An inference is an expression of the form

σ1, . . . , σn

σ

where σ1, . . . , σn, σ (with n ≥ 0) are sequents. We say that inference rules with
n > 0 are proper inference rules, while the ones with n = 0 are improper inference
rules. We call σ1, . . . , σn the upper sequents and σ the lower sequent of the inference.
Intuitively, this means that, when σ1, . . . , σn are asserted, we can infer σ from them.

Now, let A,B, C, A(x) be any formulas and let Γ,∆ and Θ be finite sets of
formulas. Here, we introduce the inference rules of the natural deduction calculus
NDINT for intuitionistic logic :
Assumption Introduction:

A `̀̀ A

Weakening Left:
Γ `̀̀ A

Γ,∆ `̀̀ A
W−l

Logical Rules:

Γ `̀̀ A ∆ `̀̀ B

Γ,∆ `̀̀ A ∧B
I∧

Γ `̀̀ A ∧B

Γ `̀̀ A
E∧

Γ `̀̀ A ∧B

Γ `̀̀ B
E∧

1.2. PRELIMINARIES 13

Γ `̀̀ A

Γ `̀̀ A ∨B
I∨

Γ `̀̀ B

Γ `̀̀ A ∨B
I∨

Γ `̀̀ A ∨B ∆, A `̀̀ C Θ, B `̀̀ C

Γ,∆,Θ `̀̀ C
E∨

Γ, A `̀̀ B

Γ `̀̀ A ⇒ B
I⇒

Γ `̀̀ A ∆ `̀̀ A ⇒ B

Γ,∆ `̀̀ B
E⇒

Γ `̀̀ ⊥

Γ `̀̀ A
⊥INT

Γ `̀̀ A(y/x)

Γ `̀̀ ∀xA(x)
I∀

Γ `̀̀ ∀xA(x)

Γ `̀̀ A(t/x)
E∀

where, in I∀, y does not occur free in Γ or ∀xA(x). We call y the proper
parameter of the I∀ rule .

Γ `̀̀ A(t/x)

Γ `̀̀ ∃xA(x)
I∃

Γ `̀̀ ∃xA(x) ∆, A(y/x) `̀̀ C

Γ,∆ `̀̀ C
E∃

where, in E∃, y does not occur free in ∆, ∃xA(x) or C. We call y the
proper parameter of the E∃ rule.

We say that π is a proof inNDINT if π is a tree of sequents satisfying the following
conditions:

1. The topmost sequents of π are initial sequents (introduced by means of an
assumption introduction);

2. Every sequent in π except the lowest one is an upper sequent of one of the
proper inference rules listed above, whose lower sequent is also in π.

We call the lowest sequent of a proof π the end-sequent. We say that π is a proof of
A from Γ in NDINT and we write

Γ `NDINT
A ,

if the end-sequent of π is Γ `̀̀ A.
We define the notions of depth of a proof-tree π , we denote with depth(π), and

the notion of subproof of a proof-tree in the obvious usual way. Moreover, we will
denote with dg(π) the degree of a proof π of NDINT, defined as the maximum be-
tween the degrees of the formulas which belong to sequents of the proof.

14 Chapter 1. INTRODUCTION AND PRELIMINARIES

The natural deduction calculus NDCL for classical first-order logic is obtained by
replacing the rule ⊥INT of the calculus NDINT with the rule:

Γ,¬A `̀̀ ⊥

Γ `̀̀ A
⊥CL

The notion of proof in NDCL and the meaning Γ `NDCL
A are defined in a way

quite similar to the corresponding cases for NDINT.

Now, we call free variables of a proof all the variables which occur free in some for-
mula of the proof and which are not proper parameters. It is well known that proper
parameters can always be chosen in such a way that the following two conditions
are satisfied:

(I). Every proper parameter in a proof π is a proper parameter of exactly one rule.

(II). The set of proper parameters is disjoint from the set of free variables of a proof.

These conventions on proper parameters will hold also when we will introduce other
rules with proper parameters, such as the Grzegorczyck Principle, Induction Rule
and the Descending Chain Rule of Chapter 4.

For any proof satisfying the above conventions, the tree-structure obtained by
replacing some of the free variables of the proof with terms is a well defined proof.
We will write π(t/x) to denote the proof obtained by substituting all the occurrences
of the free variable x in the proof π with the term t, and θπ to denote the proof
obtained by applying the substitution θ to the proof π.

Now, it is a well known fact that the calculi NDINT and HINT are equivalent
(see e.g. [Troelstra, 1973a, Troelstra and van Dalen, 1988a]). That is, the following
theorem holds:

1.2.1 Theorem Γ `HINT
A iff Γ `NDINT

A. 2

The proof of this theorem amounts to exhibit a map translating any proof of one of
the two calculi into a proof of the other. We are particularly interested in the map
translating proofs of NDINT into proofs of HINT and in the relation between the
degrees of the proofs involved in this translation. For this reason we prove only one
half of the previous theorem in the following form:

1.2.2 Theorem There exist a map Ξ associating, with any proof of NDINT, a proof
of HINT, and a linear function φ : N → N such that:

(i). For any π ∈ NDINT, if Γ `̀̀ A is the end-sequent of π and Ξ(π) = λ, then λ is
an HINT-proof of A from Γ;

(ii). For any π ∈ NDINT, dg(Ξ(π)) ≤ φ(dg(π)).

1.2. PRELIMINARIES 15

Proof: Let us assume φ(x) = x + 4. We begin to prove that there exists a map Ξ′

associating, with any proof π : Γ `̀̀ A of NDINT and with any formula H, a HINT-
proof λ of H ⇒ A from Γ′ = Γ \ {H}, such that dg(λ) ≤ Max{dg(H),dg(π)} + 4.
The proof proceeds by induction on the depth of the proof-tree π with end-sequent
Γ `̀̀ A.
Basis: If depth(π) = 0, then the only rule applied in π is an assumption introduction
and hence Γ `̀̀ A ≡ A `̀̀ A. We have two cases. If H ≡ A, then the proof Ξ′(π,H) is

1 (A ⇒ ((A ⇒ A) ⇒ A)) ⇒ ((A ⇒ (A ⇒ A)) ⇒ (A ⇒ A)) Ax8
2 A ⇒ ((A ⇒ A) ⇒ A) Ax7
3 (A ⇒ (A ⇒ A)) ⇒ (A ⇒ A) Mp 1, 2
4 A ⇒ (A ⇒ A) Ax7
5 A ⇒ A Mp 4, 5

with dg(λ) = dg(A) + 4 = dg(π) + 4. In the other case H 6≡ A and the proof is the
following:

1 A
2 A ⇒ (H ⇒ A) Ax7
3 H ⇒ A Mp 1, 2

with dg(λ) = Max{dg(H),dg(π)}+ 2.
Step: If depth(π) = h + 1, then the proof-tree π is of the kind:

π1 . . . πn

Γ `̀̀ A
,

where π1, . . . , πn are proof-trees such that, for any i with i = 1, . . . , n, depth(πi) ≤ h.
If Γi `̀̀ Ai is the end-sequent of the proof-tree πi, we have, by induction hypothesis,
that, for any formula H ′ λi = Ξ′(πi,H

′) is a HINT-proof of H ′ ⇒ Ai from Γi \ {H ′}
with dg(λi) ≤ Max{dg(H ′),dg(πi)}+ 4. Now, the proof goes by cases according to
the last rule applied in π. Since in full details the proof is rather cumbersome, we
only develop an illustrative case:

• disjunction elimination: That is, π is of the kind

π1 : Γ1 `̀̀ A ∨B π2 : Γ2, A `̀̀ C π3 : Γ2, B `̀̀ C

Γ1,Γ2,Γ3 `̀̀ C
E∨

The induction hypothesis provides us with the HINT-proofs

– λ1 = Ξ′(π1,H) of H ⇒ A ∨B from Γ1 \ {H};

– λ2 = Ξ′(π2, A) of A ⇒ C from Γ2;

– λ3 = Ξ′(π3, B) of B ⇒ C from Γ3.

16 Chapter 1. INTRODUCTION AND PRELIMINARIES

with the appropriate relations on the degrees. Now, let λ = Ξ′(π,H) be the
following proof:

λ1

1 H ⇒ A ∨B
λ2

2 A ⇒ C
λ3

3 B ⇒ C
4 (A ⇒ C) ⇒ ((B ⇒ C) ⇒ (A ∨B ⇒ C)) Ax6
5 (B ⇒ C) ⇒ (A ∨B ⇒ C) Mp 2, 4
6 A ∨B ⇒ C Mp 3, 5
7 (A ∨B ⇒ C) ⇒ (H ⇒ (A ∨B ⇒ C)) Ax7
8 H ⇒ (A ∨B ⇒ C) Mp 6, 7
9 (H ⇒ (A ∨B ⇒ C)) ⇒ ((H ⇒ A ∨B) ⇒ (H ⇒ C)) Ax8
10 (H ⇒ A ∨B) ⇒ (H ⇒ C) Mp 8, 9
11 H ⇒ C Mp 1, 10

Moreover, it is easy to verify that

dg(λ) = Max{dg(λ1),dg(λ2),dg(λ3),Max{dg(H),dg(A ∨B),dg(C)}+ 3}
≤ Max{dg(H),dg(π)}+ 4

Now, we can prove the theorem. Let π : Γ `̀̀ A be any proof in NDINT. By
the previous proof we can build on an HINT-proof λ′ of (A ⇒ A) ⇒ A from
Γ \ {A ⇒ A} such that

dg(λ′) ≤ Max{dg(A ⇒ A),dg(π)}+ 4 .

But it is easy to verify, by an inspection of the first of the three HINT-proofs
constructed above, that there exists an HINT-proof λ′′ of A ⇒ A such that
dg(λ′′) = dg(A) + 4. Thus, the following is a proof of A from Γ:

λ′

1 (A ⇒ A) ⇒ A
λ′′

2 A ⇒ A
3 A Mp 1, 2

and

dg(λ) = Max{dg(λ′),dg(λ′′)}
≤ Max{dg(π) + 4,dg(A) + 4} .

Since A occurs in π, this means dg(λ) ≤ φ(dg(π)).

2

1.2. PRELIMINARIES 17

We conclude this section by remarking that the previous proof guarantees that there
exists an effective procedure Ξ for translating proofs of natural deduction into proofs
of the Hilbert-style calculus for intuitionistic logic. Moreover, this translation has
the property that there exists a linear function φ : N → N relating the degree of a
proof π of NDINT to the degree of the corresponding proof Ξ(π) of HINT. A map
with the same properties can also be given to translate proofs of HINT into proofs
of NDINT.

Similarly, there exist translations of this kind between the calculi NDINT and
SEQINT, where SEQINT is the standard Gentzen sequent calculus for intuitionistic
logic (see [Takeuti, 1975]). A translation between these two calculi is exhibited for
example in [Gallier, 1991]. Translations with the same properties can also be given
for the classical variants of these calculi.

18 Chapter 1. INTRODUCTION AND PRELIMINARIES

Chapter 2

Fundamentals

2.1 Formal systems

Traditionally, a formal system (or what is usually called in literature logical system)
is defined by means of a pair (LA, |∼), where LA is a (first order) language with
extra-logical alphabet A and |∼ is a consequence relation satisfying some minimal
properties. In this Thesis we are interested in studying formal systems determined
by proof systems, being concerned with the problem of extracting information from
proofs. To this aim we distinguish a formal system from a calculus for it. Our charac-
terization of formal systems has something similar to the one given in [Gabbay, 1994].
We will characterize formal systems as triples (LA, |∼,H|∼), where LA is a first or-
der language, |∼ is a mathematically defined consequence relation satisfying certain
minimal conditions, and H|∼ is an algorithmic theory (a proof theory) for generat-
ing it. We have in mind the following intuitive interpretation for this triple: the
relation |∼ establishes a relation between sets of formulas and formulas of LA. It
determines the information contained in the whole formal system. H|∼ is a strategy
to obtain the information in an algorithmic way. Differently from [Gabbay, 1994],
we are not interested in H|∼ as a tool to get efficient Theorem Provers, but as a tool
to effectively extract the information from proofs. Here we introduce the notion of
derivability relation:

2.1.1 Definition (Derivability relation) Let LA be a (first order language). A
derivability relation over LA is a relation |∼ ⊆ Pow(LA)×LA satisfying the following
properties:

1. Reflexivity: If A ∈ Γ, then Γ|∼A;

19

20 Chapter 2. FUNDAMENTALS

2. Transitivity: If Γ|∼A for any A ∈ ∆ and ∆|∼B, then Γ|∼B;

3. Compactness: If Γ|∼A, then there exists Γ0 ⊆fin Γ such that Γ0|∼A.

We call |∼ derivability relation instead of consequence relation , how usually done in
literature, to point out the fact that we will be interested in studying consequence
relations generated by proof systems. This is the reason why we assume compactness
as a fundamental property of derivability relations. This property is not considered
fundamental for the general notion of a consequence relation, see e.g. [Gabbay, 1994,
Wójcicki, 1988], because compactness rules out many formal systems defined by
model theoretic methods.

2.1.2 Remark In literature derivability relations are often required to satisfy the following
conditions:

1’. Reflexivity: If A ∈ Γ then Γ|∼A;

2’. Monotonicity: Γ|∼A implies Γ,∆|∼A;

3’. Cut: Γ|∼A and Γ, A|∼B implies Γ|∼B.

It is trivial to verify that reflexivity and transitivity allow to derive monotonicity and cut.
Moreover, if the derivability relation is finitary (compact) and reflexivity holds, it is easy to
prove that also the converse holds.

Given a derivability relation |∼ over LA, we say that Γ ⊆ LA is a |∼-theory, and
we write Γ ∈ TH(|∼), if it is closed under the derivability relation |∼; i.e. A ∈ Γ
whenever ∆|∼A with ∆ ⊆ Γ. It is trivial to prove that, given a set Γ ⊆ LA, the set
{A : Γ|∼A} is a |∼-theory. In particular, the set

Theo(|∼) = {A : |∼A} ,

is a |∼-theory, called the base theory of |∼.
A useful fact about TH(|∼) is that it is a closure system, that is, for any subset

X of TH(|∼), ∩X ∈ TH(|∼). This implies that TH(|∼) is a complete lattice under ⊆
with respect to:

inf X = ∩X

supX = inf{Γ ∈ TH(|∼) : ∪X ⊆ Γ}

Note that Theo(|∼) and LA are the least and the greatest element of TH(|∼) respec-
tively.

It is important to notice that a derivability relation is uniquely determined by
the set of its theories:

2.1.3 Proposition If |∼1 and |∼2 are two derivability relations over LA, then

|∼1 = |∼2 iff TH(|∼1) = TH(|∼2) .

Proof: The “if” part is trivial. For the converse, let us assume that Γ|∼1A but
Γ|6∼2A. Then, the set ∆ = {A : Γ|∼2A} is a |∼2-theory; moreover, Γ ⊆ ∆ and A 6∈ ∆,
which implies that ∆ 6∈ TH(|∼1). 2

2.1. FORMAL SYSTEMS 21

Now, given a derivability relation |∼ over the language LA, following [Avron, 1991],
we say that:

• |∼ has an internal implication if there exists a binary connective # in LA such
that, for all A,B ∈ LA and for every Γ ⊆ LA:

Γ|∼A#B iff Γ, A|∼B .

• |∼ has a combining conjunction if there exists a binary connective & in LA such
that, for all A,B ∈ LA and any Γ ⊆ LA:

Γ|∼A&B iff Γ|∼A and Γ|∼B .

A consequence relation having an internal implication is also said to have the de-
duction property. This is obviously an important property, because it establishes a
bridge between our understanding of the implication inner to the derivability re-
lation and the implication of the language. The main property of the derivability
relations with an internal implication is that they are uniquely determined by their
base theories.

2.1.4 Proposition For any two derivability relations |∼1, |∼2 over a language LA
with an internal implication #,

|∼1 = |∼2 iff Theo(|∼1) = Theo(|∼2) .

Proof: The “only if” part is trivial. For the converse, let us assume that Γ|∼1A.
Then, by compactness, there exists {B1, . . . , Bn} ⊆ Γ such that {B1, . . . , Bn}|∼1A.
Now, applying the deduction property, it is easy to verify that

B1#(B1# . . .#(Bn#A)) ∈ Theo(|∼1) .

But Theo(|∼1) = Theo(|∼2), and hence

|∼2B1#(B1# . . .#(Bn#A)) .

Since # is an internal implication for |∼2, it is easy to deduce {B1, . . . , Bn}|∼2A,
and, applying reflexivity and transitivity, we deduce Γ|∼2A. 2

We are interested in characterizing formal systems by means of proof systems (or
calculi). A usual way to present formal systems is by means of axiomatic or Hilbert-
style systems. An Hilbert-style system (or also axiomatic system over a language LA
is a pair

H = (H0,H1)

where

• H0 is a recursive set of formulas, called axioms;

22 Chapter 2. FUNDAMENTALS

• H1 is a recursive set of rules of the form A1, . . . , An/B, called inference rules.

The provability relation determined by an Hilbert-style system H over a language
LA is the unary relation `H⊆ LA defined as follows:

`H A iff there exists a finite sequence B1, . . . , Bn of formulas of LA
such that Bk ≡ A and, for any i with i = 1, . . . , n, Bi is either an
axiom of H0 or, for some formulas C1, . . . , Cm ∈ {B1, . . . , Bi−1},
C1, . . . , Cm/Bi is a rule in H1.

We call the sequence B1, . . . , Bn a proof of A in H; moreover, if `H A, we say that
A is provable in H. The set of theorems of H is the set of all the formulas of the
language LA which are provable in H. That is:

Theo(H) = {A ∈ LA : `H A} .

There is more than one way to designate the derivability relation associated with
an axiomatic system; here we use the extension method (see [Avron, 1991]). Given
an Hilbert-style system H = (H0,H1) over LA, we define the derivability relation
|∼H (over LA) as follows:

Γ|∼HA iff there exists a sequence of formulas B1, . . . , Bn of LA such that
Bn ≡ A and, for any i with i = 1, . . . , n, either (a) Bi ∈ Γ or (b)
`H Bi or (c) there exist C1, . . . , Cm ∈ {B1, . . . , Bi−1} such that
C1, . . . , Cm/Bi is a rule of H1.

It is trivial to prove that |∼H is a derivability relation over LA. Now we will study
under which conditions a derivability relation |∼ can be characterized by an Hilbert-
style system.

2.1.5 Proposition Let |∼ be a derivability relation over LA having an internal
implication # and a combining conjunction &. If Theo(|∼) is recursively enumerable,
then there exists an axiomatic system H|∼ such that:

1. & is a combining conjunction for |∼H|∼ ;

2. # is an internal implication for |∼H|∼ ;

3. |∼H|∼ = |∼.

Proof: Let us consider a recursive enumeration {Bi}i∈ω of Theo(|∼), and let us
consider the sequence of formulas {Ai}i∈ω where:

A0 ≡ B0

Ai+1 ≡ Ai&Bi+1

It is easy to prove that the set of the formulas of the sequence {Ai}i∈ω is recursive.
Now, let:

2.1. FORMAL SYSTEMS 23

• H|∼
0 = {B : there exists j ∈ ω such that B ≡ Aj};

• H|∼
1 be the set of all rules of the form:

(r1) A&B/A

(r2) A&B/B

(r3) A#B,A/B .

H|∼
1 is evidently recursive. Let

H|∼ = (H|∼
0 ,H|∼

1) .

First of all, we prove that Theo(|∼) = Theo(|∼H|∼). If ∅|∼B, then the formula B
belongs to the enumeration {Bi}i∈ω. Let j be the positive integer such that B ≡ Bj ;
if j = 0 then B ∈ H|∼

0 . Otherwise the axiom Aj ≡ Aj−1&Bj belongs to H|∼
0 , hence

the sequence Aj , Bj , where Bj is obtained by applying the rule Aj−1&Bj/Bj , is
a proof of B is H|∼. Therefore, B ∈ Theo(|∼H|∼). The converse follows from a
straightforward induction on the sequence of formulas which determines `H|∼ B.
Moreover, still by a straightforward induction on the sequence of formulas deter-
mining Γ|∼H|∼B, we have that Γ|∼H|∼B implies Γ|∼B. Now, we prove the assertions.
1) Let Γ|∼H|∼A and Γ|∼H|∼B. Then, since |∼H|∼ is a derivability relation, there
exists Γ0 ⊆fin Γ such that Γ0|∼H|∼A and Γ0|∼H|∼B. This implies, by the above dis-
cussion, that Γ0|∼A and Γ0|∼B. Since & is a combining conjunction for |∼, we have
that Γ0|∼A&B. Moreover, if Γ0 = {C1, . . . , Ck}, by the fact that # is an internal
implication for |∼, we deduce that

|∼C1#(C2# . . .#(Ck#(A&B)) .

This implies that the considered formula belongs to Theo(|∼H|∼). But, by reflexivity,
Γ|∼H|∼Ci for any i such that i = 1, . . . , k, and, by transitivity,

Γ|∼H|∼C1#(C2# . . .#(Ck#(A&B)) .

Now, using the rule (r3), it is easy to prove that Γ|∼H|∼A&B. The proof that
Γ|∼H|∼A&B implies Γ|∼H|∼A and Γ|∼H|∼B is trivial.

2) The proof that Γ|∼H|∼A#B implies Γ, A|∼H|∼B is trivial. For the converse, the
proof is analogous to the one of Point 1).
3) Immediate from Theo(|∼) = Theo(|∼H|∼), Point 2) and Proposition 2.1.4. 2

We remark that in general there is more than one Hilbert-style system H such that
|∼ = |∼H. We say that H is an Hilbert-style system for generating |∼ if |∼ = |∼H.

Since in this thesis we are interested in logics and theories with a recursively
enumerable set of theorems for which the connectives ⇒ and ∧ are an internal
implication and a combining conjunction respectively, Proposition 2.1.5 allows us

24 Chapter 2. FUNDAMENTALS

to restrict ourselves to the family of derivability relations which can be defined by
means of Hilbert-style systems.

We say that a derivability relation |∼ over LA is regular if Theo(|∼) is recursively
enumerable and ⇒ and ∧ are respectively an internal implication and a combining
conjunction for it. In a similar way, we say that an Hilbert-style system H over LA
is regular if the corresponding derivability relation |∼H|∼ is regular.

The previous discussion justifies the following definition of formal system.

2.1.6 Definition (Formal system) A formal system is a triple (LA, |∼,H) such
that LA is a (first order) language, |∼ is a regular derivability relation (over LA) and
H is a (regular) Hilbert-style system (over LA) for generating |∼.

According to our definition, if H1 and H2 are two differently Hilbert-style systems
generating the same derivability relation |∼, we consider the two formal systems
(LA, |∼,H1) and (LA, |∼,H2) as different. This corresponds to the following intuitive
interpretation of the ingredients of the formal system. The derivability relation
specifies the relation between sets of formulas and formulas. We can think about
Γ|∼A as: Γ contains enough information to prove A. But the derivability relation
does not give any hint on the process we must perform to derive A form Γ. On
the contrary, the Hilbert-style system specifies the way according to which we can
obtain A starting from Γ. In this sense, different Hilbert-style systems corresponds
to different ways to organize and coordinate the involved information. To define
the process of extraction of information from proofs we must know in which way
the formal system correlates information. This justifies the introduction of a proof
theory for |∼ in the definition of formal system.

Now, since our aim is to extract in an effective way information from a formal
system, we need some machinery which allows us to control the logical complexity
of the information to be extracted. More precisely, we require that the process
extracting information from a proof (or a set of proofs) needs only to look at a share
of the formal system bounded in logical complexity. The Hilbert-style systems allow
us to define a notion of formula proved with a bounded complexity which is very
natural.

First of all, given a first order language LA and a positive integer k, we denote
with Lk

A the set of all the formulas of LA with complexity less than or equal to k.
That is

Lk
A = {A ∈ LA : dg(A) ≤ k} .

Given an Hilbert-style system H = (H0,H1), we define, for any positive integer k,
the k-bounded provability relation `k

H of H as follows:

`k
H A iff there exists a finite sequence B1, . . . , Bn of formulas of Lk

A
such that Bn ≡ A, and for any i with i = 1, . . . , n, Bi is either
an axiom of H0 or there exist C1, . . . , Cm ∈ {B1, . . . , Bi−1} such
that C1, . . . , Cm/Bi is a rule in H1.

2.2. PROOFS AND CALCULI 25

If `k
H A we say that A is k-provable in H. The set of all the formulas of LA which

are k-provable in H will be denoted by Theok(H), i.e.,

Theok(H) = {A ∈ LA : `k
H A} .

The set Theok(H) represents the amount of information of the formal system
generated by H that the Hilbert-style system is able to generate within a fixed
logical complexity k.

We can define the k-bounded derivability relation |∼k
H as follows:

Γ|∼k
HA iff there exists a finite sequence B1, . . . , Bn of formulas of Lk

A,
such that Bn ≡ A and, for any i with i = 1, . . . , n, either Bi ∈ Γ
or `k

H Bi or there exist C1, . . . , Cm ⊆ {B1, . . . , Bi−1} such that
C1, . . . , Cm/Bi is a rule of H1.

It is easy to see that, for any k ≥ 0, |∼k
H is a derivability relation over LA, but

it is also easy to verify that |∼k
H cannot have an internal implication. We will call

{|∼i
H}i∈ω the stratification of |∼H. We remark that |∼H = |∼∗

H, where

|∼∗
H =

⋃
i∈ω

|∼i
H .

2.2 Proofs and calculi

Usually a calculus is meant to be a system of rules to build up proofs. There are
various proof-theoretical formalisms to define calculi. Here, in order to obtain an
abstraction level adequate to our purposes, we axiomatize the notions of proof and
calculus in such a way as to capture all the various proof-theoretical formalisms used
to define the usual calculi for classical and intuitionistic logics. With this aim, we
identify only the properties we consider fundamentals for these notions.

2.2.1 Definition (Proof) A proof in a language LA is any finite object π such
that:

1. The set of formulas of LA occurring in π is uniquely determined and non-
empty;

2. There are two uniquely determined sets of formulas Γ and ∆ occurring in π
such that: Γ (possibly empty) is the set of assumptions of π and ∆, which must
be non empty, is the set of consequences of π.

2.2.2 Remark There is a natural restriction of the above definition, which amounts to
assume a proof to be a pair (M,f), where M is an element of a class of structures M
(partial orders, lists, trees,. . .) and f is a map associating, with every element of the
structure M , a sequent of LA. This definition might be useful to study various aspects of
calculi. �

26 Chapter 2. FUNDAMENTALS

We will characterize the proofs by suitable attributes, such as assumptions, conse-
quences, formulas, complexity, and so on; the choice of the attributes depends on
the level of abstraction we want. We only require for an attribute to be uniquely and
effectively determined by the definition of a proof. Here, we consider the following
attributes of a proof:

Seq(π) : it is the sequent Γ `̀̀ ∆, called the sequent proved by π, where Γ
is the (finite and possibly empty) set of assumptions of the proof
π, while ∆ is the (non-empty and finite) set of consequences of π.
To indicate that Seq(π) = Γ `̀̀ ∆, we use the compact notation

π : Γ `̀̀ ∆ .

Wffs(π) : it is a set of formulas called the formulas of π; it contains all the
formulas which occur in π.

dg(π) : it is the degree of the proof π defined as

dg(π) = Max{dg(A) : A ∈ Wffs(π)} .

Given a sequent Γ `̀̀ ∆, we define the degree of Γ `̀̀ ∆ as

dg(Γ `̀̀ ∆) = Max{dg(A) : A ∈ Γ ∪∆} .

2.2.3 Definition (Calculus) A calculus (over LA) is a pair C = (C,SubPr), where:

1. C is a recursive set of proofs in the language LA;

2. SubPr is a map from C into Powfin(C) with the following properties:

(a) For any π ∈ C, if τ ∈ SubPr(π) then SubPr(τ) ⊆ SubPr(π);

(b) For any π′ ∈ SubPr(π), dg(π′) ≤ dg(π).

This definition of calculus does not refer to any particular inference system, but any
known inference system (Hilbert-style, Gentzen-style, . . .) is a calculus according
to our definition.

The map SubPr associates with any proof of the calculus the finite set of its
subproofs. We require the notion of subproof to depend on the calculus because
we are looking at subproofs of a proof π as the fragment of the calculus needed to
extract the constructive content of π. We remark that conditions (2a) and (2b) are
natural: the former requires that the set of subproofs of a proof also contains the
subproofs of its elements. The latter requires that the degree of the subproofs of a
proof must not exceed the degree of the proof.

Now, given a set of proofs Π of a calculus C = (C,SubPr), we denote with [Π]C
the closure under subproofs of Π in the calculus C. Namely,

[Π]C = Π ∪ SubPr(Π) .

2.2. PROOFS AND CALCULI 27

Whenever the calculus C will be clear from context, we simply write [Π] instead of
[Π]C.

In general, [Π] is not a recursive set of proofs. If Π is finite then, of course, [Π] is
recursive, and hence ([Π],SubPr�[Π]) is a calculus, where SubPr�[Π] is the restriction
of SubPr to [Π].

We will use the following notational conventions: calculi will be denoted by
C,C′,C1, . . ., proofs by π, π′, π1, . . ., sets of proofs by Π,Λ possibly with indexes,
sequents by σ, σ′, σ1, . . ., and sets of sequents by Σ,Σ′,Σ1, Moreover, to simplify
the notation we write `̀̀ ∆ to indicate the sequent ∅ `̀̀ ∆ with an empty set of
premises; given a calculus C = (C,SubPr) we write π ∈ C to mean π ∈ C and
π : σ ∈ C to mean that π ∈ C and Seq(π) = σ (indeed, for sake of simplicity, in the
following, we will often identify the calculus C with the set of its proofs C).

Given a calculus C, let Π ⊆ C be a set of proofs (possibly the whole calculus);
we define the following attributes of Π.

Seq(Π) : it is the set of all the sequents proved in Π, i.e.

Seq(Π) = ∪π∈ΠSeq(π) .

Wffs(Π) : it is the set of all the formulas occurring in some proof of Π, i.e.

Wffs(Π) = ∪π∈ΠWffs(π) .

dg(Π) : it is the degree of the set of proofs Π defined as:

dg(Π) = Max{dg(π) : π ∈ Π} ,

where we assume dg(Π) = ∞ if Π contains proofs of any com-
plexity.

Theo(Π) : it is the set of theorems proved in Π, i.e.

Theo(Π) = {A : `̀̀ A ∈ Seq(Π)} .

Given two sets of proofs Π1 and Π2 over the same language LA, but possibly
belonging to different calculi, we write

Π1 ≈ Π2 iff Seq(Π1) = Seq(Π2) .

We say that two calculi C1 = (C1,SubPr1) and C2 = (C2,SubPr2) (over the same
language) are equivalent iff C1 ≈ C1. Hereafter, we will always write C1 ≈ C2 for
C1 ≈ C1.

Formal systems and calculi are related by the following obvious definition:

2.2.4 Definition (Presentation of a formal system) Let S = (LA, |∼,H) be a
formal system and C = (C,SubPr) be a calculus over LA. We say that C is a
calculus (or a presentation) for S iff Theo(C) = Theo(|∼).

28 Chapter 2. FUNDAMENTALS

This definition relates calculi and formal systems only looking at global properties of
the two systems; namely, the set of theorems they prove. Now, as already discussed,
we consider the Hilbert-style calculus involved in the definition of a formal system
as a way to coordinate and organize pieces of information. In this sense, we intend
to consider a presentation (calculus) for a formal system as a kind of simulation of
the main deductive features of the Hilbert-style system generating it. Thus, we will
consider “reasonable calculi” for a formal system only those calculi which, so to say,
do not affect in an essential way the organization of the information involved in the
Hilbert-style system on which the formal system is based. The measure we will use
to distinguish “reasonable calculi” form “unreasonable ones” depends on the degree
of the proofs of the calculus in hand, and is formalized by the following definition.

2.2.5 Definition Let S = (LA, |∼,H) be a formal system and let C = (C,SubPr)
a presentation for it. We say that C agrees with S if, for any set Π ⊆ C such that
dg(Π) ≤ k (k > 0), there exists a positive integer h such that Theo(Π) ⊆ Theo(`h

H).

Thus, according to the above definition, a calculus for a formal system can be seen
as an alternative way to organize its information. The “local information” in this
calculus may be greater than the one of the Hilbert-style system generating the
formal system. This means that the set of formulas the calculus can prove within a
given complexity may be greater than the set of formulas provable in the Hilbert-
style system within the same complexity. But we do not accept presentations for a
formal system allowing to prove within a fixed complexity sets of formulas which in
the Hilbert-style system involve proofs of any complexity.

2.3 Generalized rules

In the following we will be interested in characterizing subsets of a calculus which
have some closure properties. To this aim we introduce the notion of generalized
rule.

2.3.1 Definition (Generalized rule) Let Σ be the set of all the sequents in the
language LA and let Σ∗ be the set of all finite sequences of sequents in Σ. A
generalized rule (over LA) is a relation R ⊆ Σ∗ × Σ.

We denote with ε the empty sequence of sequents. If σ∗ is a finite sequence of
sequents in Σ, we write σ ∈ R(σ∗) to mean that (σ∗, σ) ∈ R. The intuitive reading
of σ ∈ R(σ∗) is: σ is obtained by applying R to σ∗. We call domain of R the set

dom(R) = {σ∗ ∈ Σ∗ : there exists σ such that σ ∈ R(σ∗)} .

Examples of generalized rules are:

Substitution rule (Subst).
The domain of Subst is the set of all the sequents, and, for every substitution

2.3. GENERALIZED RULES 29

θ of terms for individual variables:

θΓ `̀̀ θ∆ ∈ Subst(Γ `̀̀ ∆) .

Cut rule (Cut+).
The domain of Cut+ contains all the sequences of sequents which have the
form Γ1 `̀̀ H,∆1; Γ2,H `̀̀ ∆2, and:

Γ1,Γ2 `̀̀ ∆1,∆2 ∈ Cut+(Γ1 `̀̀ H,∆1; Γ2,H `̀̀ ∆2) .

Modus Ponens (Mp).
The domain of Mp contains any sequence of sequents of the form Γ1 `̀̀ A ⇒
B; Γ2 `̀̀ A, and:

Γ1,Γ2 `̀̀ B ∈ Mp(Γ1 `̀̀ A ⇒ B; Γ2 `̀̀ A) .

Weakening rules (Wk-l, Wk-r) .
The domains of Wk-l and Wk-r contain any sequent Γ `̀̀ ∆ and, for any
formula A:

Γ, A ` ∆ ∈ Wk-l(Γ `̀̀ ∆) and Γ ` ∆, A ∈ Wk-r(Γ `̀̀ ∆) .

We will say that a generalized rule R is standard iff it includes Subst, that is
Subst ⊆ R. Hereafter, we will always consider standard generalized rules, and
hence we will say generalized rule to mean a standard generalized rule.

2.3.2 Definition Let R be a generalized rule over LA. A set of sequents ∆ in the
language LA is closed under R (shortly R-closed) iff, for any σ, σ1, . . . , σn ∈ Σ, if
σ ∈ R(σ1; . . . ;σn) and σ1, . . . , σn ∈ ∆ then σ ∈ ∆. A set of proofs Π over LA is
R-closed iff Seq(Π) is R-closed.

That is, a set of proofs Π is R-closed iff, for every σ, σ1, . . . , σn ∈ Σ such that
σ ∈ R(σ1; . . . ;σn), if π1 : σ1, . . . , πn : σn ∈ Π, then Π contains at least a proof π : σ.
By an abuse of notation, given proofs π : σ and π1 : σ1, . . . , πn : σn we will write
π : σ ∈ R(π1 : σ1; . . . ;πn : σn) and π1 : σ1, . . . , πn : σn ∈ dom(R).

Since the union of generalized rules is a generalized rule, we can restrict our
analysis of the closure properties to single rules.

2.3.3 Definition (R-subcalculus) Let Π be a set of proofs of a calculus C over
LA. Given a generalized rule R over LA, we call R-subcalculus of Π any subset Π′

of Π which is R-closed. We write Π′ vR Π to mean that Π′ is an R-subcalculus of
Π.

30 Chapter 2. FUNDAMENTALS

According to the previous definition, different kinds of generalized rules R charac-
terize different kinds of R-subcalculi.

We notice that an R-subcalculus is not required to be a calculus, that is, neither
we require that it is a recursive set of proofs, nor we require that it is closed with
respect to subproofs.

Now, let R ⊆ Σ∗×Σ be a generalized rule, ad let C be an R-closed calculus. We
define the operator R on subsets of C associated with R as follows: for any Π ⊆ C,

R(Π) = Π ∪ {π : σ ∈ C : σ ∈ R(σ1; . . . ;σn) and π1 : σ1, . . . , πn : σn ∈ Π} .

We define Rn(Π), for n ≥ 0, in the usual way, that is:

R0(Π) = Π

Rn+1(Π) = R(Rn(Π))

The closure of R over Π is
R∗(Π) =

⋃
k<ω

Rk(Π)

According to the previous definition, one can see R as an operator on the power
set of C. It is easy to verify that R is a monotone and continuous operator on the
complete partial order (Pow(C),⊆), and hence R∗(Π) is the least fix point of R
containing Π.

2.3.4 Remark Let us consider the structure P = (Pow(C),⊆). Now, given X ⊆ Pow(C),
let sup(X), the least upper bound of X, and inf(X), the greatest lower bound of X, be defined
respectively as the union set ∪X of X and the intersection set ∩X of X. Since, in P , sup(X)
and inf(X) exist for any X ⊆ Pow(C), P is a complete lattice and hence a complete partial
order . Moreover, R is order preserving and hence, by the Knaster-Tarsky Theorem (see
[Davey and Priestley, 1990]), R has a least fix point in Pow(C). Now, we recall that a set
X is directed if every finite subset of X has an upper bound in X. To prove that R is
continuous we have to prove that, for any X ⊆ Pow(C) which is directed

R(sup(X)) = sup(R(X)) .

First of all we notice that, if {π1, . . . , πn} ⊆ sup(X), then there exists a set of proofs Π′ in
X such that {π1, . . . , πn} ⊆ Π′. Now, π : σ ∈ R(sup(X))

iff [by definition of R]
π ∈ sup(X) or π : σ ∈ R(π1 : σ1; . . . ;πn : σn) with π ∈ C and π1, . . . , πn ∈ sup(X)

iff [by the previous remark]
π ∈ Π′ or π : σ ∈ R(π1 : σ1; . . . ;πn : σn) and π1, . . . , πn ∈ Π′ for some Π′ ∈ X

iff [by definition of R]
π ∈ R(Π′) for some Π′ ∈ X

iff π ∈ sup(R(X)).

Therefore, R is a continuous operator on Pow(C). Hence, by a well-known Theorem (see
CPO Fix Point Theorem I in [Davey and Priestley, 1990]), R∗

(Π) is the least fix point of R
containing Π. �

2.3. GENERALIZED RULES 31

Hereafter, given a set of proofs Π we will denote simply with R∗(Π) the set
R∗(Π). In particular, in the following sections we will use the closure under Subst,
Subst∗(Π), of a set of proofs Π. R∗(Π) is related to R-subcalculi by the following
proposition:

2.3.5 Proposition Let R be a generalized rule and let C be an R-closed calculus.
Then, for any R-subcalculus Π of C:

1. If Λ ⊆ Π then Seq(R∗(Λ)) ⊆ Seq(Π);

2. Π ≈ R∗(Π), but in general Π ⊆ R∗(Π).

Proof: 1) If σ ∈ Seq(R∗(Λ)), then there exist k ≥ 0 and π ∈ Rk(Λ) such that
Seq(π) = σ. Now, we prove by induction on k that σ ∈ Seq(Rk(Λ)) entails σ ∈
Seq(Π). If k = 0, then the assertion follows from Seq(Λ) ⊆ Seq(Π). Let us suppose
that σ ∈ Seq(Rk+1(Λ)) with π : σ ∈ Rk+1(Λ). Then either π : σ ∈ Rk(Λ) or
there exist π1 : σ1, . . . , πn : σn ∈ Rk(Λ) such that σ ∈ R(σ1; . . . ;σn). In the first
case the assertion immediately follows from induction hypothesis. In the second
case, by induction hypothesis, σ1, . . . , σn ∈ Seq(Π) and hence, since Π is R-closed,
σ ∈ Seq(Π).
2) Since Π is included in R∗(Π) (Π = R0(Π)), Seq(Π) ⊆ Seq(R∗(Π)) is immediate,
while the converse holds by Point (1) of this proposition. On the other hand, by
definition of R∗(Π), any proof π of a sequent σ such that σ ∈ R(σ1; . . . ;σn) and
σ1, . . . , σn ∈ Seq(Π) is inR∗(Π), while at least one proof of such a sequent is required
to belong to Π to assure it is R-closed. 2

2.3.6 Definition (Generalized R-subcalculus) LetR be a generalized rule over
LA and let C be an R-closed calculus (over LA). We say that a set of proofs Π is a
generalized R-subcalculus of C, written Π �R C, if there is an R-subcalculus Π′ of
C such that Π ≈ Π′.

The notion of generalized R-subcalculus is important because, passing from R-
subcalculi to generalized R-subcalculi, we are not obliged to work with subsets of
C, but we can work with sets of proofs equivalent (in the sense of ≈) to some
R-subcalculus of C. The notion is particularly interesting when the generalized
R-subcalculus is itself a calculus. To characterize this notion, we fix a convenient
representation of generalized R-subcacluli.

2.3.7 Definition (The abstract calculus ID(R,Σ)) Let R be a generalized ru-
le over LA and let Σ be any set of sequents in the same language. The deductive
sequent-system ID(R,Σ) is the set of proof-trees τ inductively defined as follows:

Basis : For every σ ∈ Σ, τ ≡ σ is a proof-tree of ID(R,Σ) with root σ
and with depth(τ) = 1.

32 Chapter 2. FUNDAMENTALS

Step : If τ1 : σ1, . . . , τn : σn are proof-trees of ID(R,Σ) (where σi is the
root of τi) then, for every σ ∈ R(σ1; . . . ;σn),

τ ≡
τ1 : σ1 . . . τn : σn

σ
R

is a proof-tree of ID(R,Σ) with root σ and

depth(τ) = Max{depth(τ1), . . . ,depth(τn)}+ 1 .

We remark that, if both R and Σ are recursive, then ID(R,Σ) is a calculus, where
we consider the obvious function SubPr determined by the inductive definition of
ID(R,Σ). Namely,

• If depth(τ) = 1, then SubPr(τ) = {τ};

• If depth(τ) = h + 1, with

τ ≡
τ1 : σ1 . . . τn : σn

σ
R

then, SubPr(τ) = SubPr(τ1) ∪ . . . ∪ SubPr(τn) ∪ {τ}.

If ID(R,Σ) is a calculus, we can consider Σ as the set of axiom-sequents and R
as the set of inference rules of ID(R,Σ).

Given a generalized rule R′ such that R′ ⊆ R, by the R′-depth of a proof
τ ∈ ID(R,Σ) we mean the number of applications of the generalized rules R′ which
occurs in τ . If R′ and R′′ are two generalized rules included in R, we will use simply
(R′,R′′)-depth to indicate the (R′ ∪R′′)-depth of a proof.

Definition 2.3.7 allows us to recover the meaning of the generalized rules as
inference rules, but abstracting from the particular inference system.

2.3.8 Proposition Let R be a generalized rule, let C be an R-closed calculus, and
let Λ be a set of proofs of C. Then:

1. ID(R,Seq(Λ)) ≈ R∗(Λ).

2. Seq(ID(R,Seq(Λ)) ⊆ Seq(Π) for every R-subcalculus Π such that Seq(Λ) ⊆
Seq(Π).

Proof: 1) The fact that σ ∈ Seq(ID(R,Seq(Λ)) implies σ ∈ Seq(R∗(Λ)) follows from
a straightforward induction on the depth of the proof of σ in ID(R,Seq(Λ)). On
the other hand, Seq(Rk(Λ)) ⊆ Seq(ID(R,Seq(Λ))) follows from a straightforward
induction on k.
2) First of all we notice that ID(R, .) is a monotone operator on sets of sequents.
Hence Seq(Λ) ⊆ Seq(Π) implies Seq(ID(R,Seq(Λ))) ⊆ Seq(ID(R,Seq(Π))). But, by
the previous point of this proposition, Seq(ID(R,Seq(Π))) = Seq(R∗(Π)) and, by
Point (2) of Proposition 2.3.5, Seq(R∗(Π)) = Seq(Π). Hence the assertion. 2

2.4. UNIFORMITY 33

Now, by Point (2) of Proposition 2.3.5, we have that, if Π is an R-subcalculus of an
R-closed calculus C, then

Π ≈ R∗(Π)

and hence, by Point (1) of Proposition 2.3.8,

Π ≈ ID(R,Seq(Π)) .

Hence ID(R,Seq(Π)) is a generalized R-subcalculus of C. More generally, since for
any set of proofs Π,R∗(Π) is anR-subcalculus of C, by Point (1) of Proposition 2.3.8,
ID(R,Seq(Π)) ≈ R∗(Π) and hence ID(R,Seq(Π)) is a generalized R-subcalculus of
C. Summarizing, the following results hold:

2.3.9 Theorem Let R be a generalized rule and let C be an R-closed calculus.

(i). If Π is an R-subcalculus of C then Π ≈ ID(R,Seq(Π));

(ii). If Π ⊆ C, then ID(R,Seq(Π)) is a generalized R-subcalculus of C.

2

By Point (2) of Proposition 2.3.8, ID(R,Seq([Π])) represents the information con-
tained in a set of proofs Π and nothing else in the following sense: for every R-
subcalculus Π′ of C, if Π′ is sufficient to prove all the sequents proved by [Π], then
Π′ is sufficient to prove all the sequents proved by ID(R,Seq([Π])). It is also an
abstract representation, since it is independent of the calculus used to construct the
proofs in Π. This assigns the following role to R. Given any proof π, the pieces of
information contained in it are seen as contained only implicitly in [π]. To extract
them in an explicit way, we use the closure under a generalized ruleR. HereR works
as a mechanism to extract information from proofs, where the extracted information
is the set of the sequents and theorems proved by ID(R,Seq([π])). However, it is
obvious that for this extraction procedure to be effective, we need the rule R and
the set of sequents determined by [π] to be recursive. In Chapters 3 and 4, we will
show that the sets of theorems extracted from proofs in some constructive calculi by
suitable rules R satisfy the disjunction property and the explicit definability property.
The extraction mechanism works as well for classical proofs, even if in this case the
disjunction property and the explicit definability property cannot be guaranteed.

2.4 Uniformity

A representation function is any function mapping proofs of a calculus into proofs
of another calculus preserving the proved sequents. Formally:

2.4.1 Definition (Representation function) Given two sets of proofs Π1 and
Π2 in a language LA (possibly with Π1 and Π2 calculi), a representation function of
Π1 in Π2 is any function r : Π1 → Π2 such that, for every π ∈ Π1, if Seq(π) = σ
then r(π) : σ.

34 Chapter 2. FUNDAMENTALS

One immediately sees that a way to prove that Seq(Π1) ⊆ Seq(Π2) is to exhibit
a representation function r : Π1 → Π2. If also exists a representation function
r′ : Π2 → Π1 then Seq(Π2) ⊆ Seq(Π1), that is Π1 ≈ Π2. Moreover, if r(Π1)
(the image of Π1 under r) is an R-subcalculus of Π2, then Π1 is a generalized R-
subcalculus of Π2.

Now, we define uniform representations as follows:

2.4.2 Definition Let φ : N → N. We say that :

(i). A representation function r : Π1 → Π2 is uniform w.r.t. φ iff, for every π ∈ Π1,
dg(r(π)) ≤ φ(dg(π)).

(ii). Π1 is uniformly embedded in Π2 w.r.t. φ, written Π1
φ
↪→ Π2, if there exists a

representation function r : Π1 → Π2 uniform w.r.t. φ.

(iii). If r : Π1 → Π2 is a uniform representation w.r.t. φ and r(Π1) (the image
of Π1 under r) is an R-subcalculus of Π2, then we say that Π1 is a uniform
generalized R-subcalculus of Π2 w.r.t. φ, written Π1 �φ Π2.

(iv). We say that Π1 and Π2 are uniformly equivalent w.r.t. φ , written Π1 ≈φ Π2, if

Π1
φ
↪→ Π2 and Π2

φ
↪→ Π1.

The above definition can be justified in the following way. Let us consider a syntac-
tical proof of the fact that a deductive system C1 is equivalent to another deductive
system C2; in the most cases, such a proof implicitly or explicitly defines two rep-
resentation functions r : C1 → C2 and r′ : C2 → C1. As an example, see the sketch
of the proof of equivalence between HINT and NDINT we gave in Section 1.2.2, or
the proof of equivalence between SEQINT and NDINT exhibited in [Gallier, 1991].
In general, r and r′ are uniform w.r.t. a suitable function φ. In particular, the usual
calculi for classical (for intuitionistic) logic are uniformly equivalent with respect
to a linear function. The notions of uniform representation and of generalized uni-
form R-subcalculus play a fundamental role also in the framework of logic program
synthesis. For instance, in [Lau and Ornaghi, 1992] the authors show that the sld-
derivations are uniformly representable in the usual calculi for minimal logic, and in
[Momigliano and Ornaghi, 1994] that sldnf-derivations are uniformly representable
in the same calculi; these results are used in [Lau and Ornaghi, 1992] to prove an
incompleteness result for deductive program synthesis from first-order specifications.

In this Thesis we will use the following result which is a consequence of Theorem
1.2.2 and of the discussions at the end of Section 1.2.2:

2.4.3 Theorem There exists a linear function φ : N → N such that HINT ≈φ

NDINT. 2

2.4.4 Definition Let R be a generalized rule (over LA), let C be calculus (over
LA) and let φ : N → N. We say that C is uniformly R-closed w.r.t. φ iff:

2.4. UNIFORMITY 35

1. C is R-closed;

2. For any σ ∈ Seq(C) and any π1 : σ1, . . . , πn : σn ∈ C such that σ ∈
R(σ1; . . . ;σn), there exists at least a proof π : σ ∈ C such that

dg(π) ≤ Max {dg(π1), . . . ,dg(πn), φ(dg(σ1)), . . . , φ(dg(σn)), φ(dg(σ))} .

We say that C is uniformly R-closed if there exists a function φ : N → N such that
C is uniformly R-closed w.r.t. φ.

2.4.5 Example The natural deduction calculus NDINT is uniformly closed under
the intuitionistic version of the Cut+ generalized rule, that is the generalized rule
Cut obtained by restricting the right-hand side of the sequents in hand to contain
only one formula. Starting from the proofs π1 : Γ `̀̀ H and π2 : ∆,H `̀̀ A, we can
build the proof π : Γ,∆ `̀̀ A as follows:

π1 : Γ `̀̀ H

π2 : ∆,H `̀̀ A

∆ `̀̀ H ⇒ A
I⇒

Γ,∆ `̀̀ A
E⇒

such that
dg(π) ≤ Max{dg(π1),dg(π2),dg(∆,H `̀̀ A) + 1} .

2.4.6 Proposition Let R be a generalized rule (over LA), let φ : N → N be a non
decreasing function, let C be a calculus (over LA) uniformly R-closed w.r.t. φ, and
let Π be any set of proofs of C such that, for every π : σ ∈ Π, dg(π) ≤ φ(dg(σ)).

Then ID(R,Seq(Π))
φ
↪→ C.

Proof: Let τ, τ1, τ2, . . . proofs of ID(R,Seq(Π)) and let π, π1, π2, . . . proofs in C. A
representation r : ID(R,Seq(Π)) → C uniform w.r.t. φ can be inductively defined
as follows:
Basis: Let τ : σ ∈ ID(R,Seq(Π)), with depth(τ) = 1. We have two cases: either
σ ∈ Seq(Π) or σ ∈ R(ε). In the former case, by hypothesis, there exists a proof
π ∈ Π such that dg(π) ≤ φ(dg(σ)). In the latter case, the existence of a proof π
satisfying this property directly follows from uniform closure of C under R. In both
cases we set r(τ) = π.
Step: Let us consider a proof τ ∈ ID(R,Seq(Π)) with depth(τ) = h + 1:

τ ≡
τ1 : σ1 . . . τn : σn

σ
R .

By definition σ ∈ R(σ1; . . . ;σn); hence, by induction hypothesis, we deduce that for
any i with 1 ≤ i ≤ n, there exists a proof πi = r(τi) ∈ C such that πi : σi and
dg(πi) ≤ φ(dg(τi)). But C is uniformly R-closed with respect to φ, hence there
must exist a proof π : σ ∈ R(π1 : σ1, . . . , πn : σn) with

dg(π) ≤ Max{dg(π1), . . . ,dg(πn), φ(dg(σ1)), . . . , φ(dg(σn)), φ(dg(σ))} .

36 Chapter 2. FUNDAMENTALS

Since, for any i with i = 1, . . . , n, dg(σi) ≤ dg(τi) and φ is non decreasing, we have
that φ(dg(σi)) ≤ φ(dg(τi)). Hence,

dg(π) ≤ Max{φ(dg(τ1)), . . . , φ(dg(τn)), φ(dg(σ))}
≤ φ(dg(τ)) .

We set r(τ) = π and this concludes the proof. 2

It is easy to verify that, if C is a calculus uniformly R-closed with respect to a
function φ, then there exists a non decreasing function φ′ such that C is uniformly
R-closed with respect to φ′. For, consider the function φ′ inductively defined as
follows: {

φ′(0) = φ(0)
φ′(i) = Max{φ(i), φ′(i− 1)}

Uniform representations will be used according to the following points.

2.4.7 Definition A generalized rule R (over LA) is non increasing iff:

1. For any σ1, . . . , σn ∈ dom(R) with n > 0, if σ ∈ R(σ1; . . . ;σn), then

dg(σ) ≤ Max{dg(σ1), . . . ,dg(σn)} ;

2. There exists a positive integer k such that, for any σ ∈ R(ε), dg(σ) ≤ k.

Given a non-increasing generalized rule R, we say that it is k-bounded if k is the
minimum integer for which condition (2) of the previous definition is satisfied. We
remark that, if ε 6∈ dom(R), then R is 0-bounded.

2.4.8 Proposition LetR be a non increasing (k-bounded) generalized rule (overLA),
let φ : N → N be a non decreasing function and let C be a calculus (over LA) which
is uniformly R-closed w.r.t. φ. If Π is a subset of C such that the degree of any
proof in Π is not greater than a constant kΠ, then there exists h ∈ N such that,
for any sequent σ provable in ID(R,Seq(Π)), there is a proof π : σ ∈ C such that
dg(π) ≤ h.

Proof: Since R is non-increasing, it follows from a straightforward induction on
depth(τ) that every proof τ ∈ ID(R,Seq(Π)) has degree

dg(τ) ≤ k′ = Max{k, kΠ} . (2.1)

Now, since, for any π : σ ∈ Π, dg(π : σ) ≤ kΠ, we also have that

dg(π : σ) ≤ Max{kΠ, φ(dg(σ))} . (2.2)

Let us define φ′ : N → N as the function associating, with any x ∈ N, the value
φ′(x) = Max{kΠ, φ(x)}. Since φ ≤ φ′ and C is uniformlyR-closed w.r.t. φ, then C is
also uniformly R-closed w.r.t. φ′, where φ′ is a non decreasing function. Since (2.2)

2.4. UNIFORMITY 37

implies that, for any π : σ ∈ Π, dg(π : σ) ≤ φ′(dg(σ)), we can apply Proposition
2.4.6 to deduce that ID(R,Seq(Π)) is uniformly embedded in C w.r.t. φ′. That
is, there exists a representation r : ID(R,Seq(Π)) → C such that, for any τ : σ ∈
ID(R,Seq(Π)),

dg(r(τ)) ≤ φ′(dg(τ)) = Max{kΠ, φ(dg(τ))} (2.3)

But, since φ is a non decreasing function, from (2.1) and (2.3) we deduce

dg(r(τ)) ≤ h = Max{kΠ, φ(k′)} .

2

We remark that the notion of non-increasing rule is a generalization of the sub-
formula property. Namely, we say that a formula H is a subformula of a formula A
iff one of the following conditions is satisfied:

1. A ≡ θH for some substitution of individual variables θ;

2. A is ¬B and H is a subformula of B;

3. A is either B ∧ C or B ∨ C or B ⇒ C, and H is a subformula of B or a
subformula of C;

4. A is either ∀xB(x) or ∃xB(x), and H is a subformula of B(x).

Now, we define what we mean by a generalized rule satisfying the subformula property.

2.4.9 Definition A generalized rule R (over LA) has the subformula property iff,
for any σ, σ1, . . . , σn, if σ ∈ R(σ1; . . . ;σn), then every formula occurring in σ is a
subformula of some formula occurring in σ1, . . . , σn.

It should be evident that the subformula property corresponds to a particular case
of non increasing rule. The following proposition can be easily proved:

2.4.10 Proposition Let R be generalized rule (over LA) with the subformula
property and let C be an R-closed calculus (over LA). If Π ⊆ C, then, for any
τ : σ ∈ ID(R,Seq([Π])), all the formulas of σ are subformulas of some formula
occurring in Seq([Π]). 2

To conclude this section we quote a result which states a sufficient condition for
a calculus to agree with a formal system.

2.4.11 Proposition Let H be an Hilbert-style system over LA and let SH be the
formal system (LA, |∼H,H) generated by H. Moreover, let the calculus C (over LA)
be a presentation for SH and let Π be the set of all the proofs π : `̀̀ A ∈ C (that is
Π contains the proofs of all the theorems of C). If Π is uniformly embedded in H
w.r.t. a function φ : N → N, then C agrees with SH.

38 Chapter 2. FUNDAMENTALS

Proof: Since Π
φ
↪→ H, there must exist a representation function r : Π → H uniform

w.r.t. φ. Now, let Λ be any subset of C such that dg(Λ) ≤ h (for some h ≥ 1), and
let Λ′ = Λ ∩ Π. Since r is uniform w.r.t. φ and dg(Λ′) ≤ h, we have dg(r(Λ′)) ≤
φ(h). This implies Theo(Λ′) ⊆ Theo(`φ(h)

H), and since Theo(Λ) = Theo(Λ′) this
immediately yields the assertion. 2

Hence, by Theorem 2.4.3 and the previous proposition, we deduce:

2.4.12 Theorem NDINT agrees with the formal system generated by HINT. 2

2.5 Strongly constructive formal systems

Now, we have all the ingredients needed to define the notions of strongly constructive
calculus and strongly constructive formal system.

First of all, given a set of formulas Γ, we say that it has the disjunction property
and the explicit definability property (for closed or open formulas) iff the following
properties hold:

Disjunction property:

(Dp) : if A∨B ∈ Γ and A∨B is a closed formula, then either A ∈ Γ or
B ∈ Γ.

(Dpopen) : if A ∨B ∈ Γ, then either A ∈ Γ or B ∈ Γ.

Explicit definability property:

(Ed) : if ∃xA(x) ∈ Γ and ∃xA(x) is a closed formula, then A(t/x) ∈ Γ
for some closed term t of the language.

(Edopen) : if ∃xA(x) ∈ Γ, then A(t/x) ∈ Γ for some term t of the language.

In the following we will be faced with two different kinds of constructive formal
systems: the first is based on the properties (Dpopen) and (Edopen), and include pure
logics or systems with weak extra-logical portions:, the second kind of constructive
formal system depends on the properties (Dp) and (Ed) and involves formal systems
with strong extra-logical principles such as the induction ones. We will call construc-
tive, without any further qualification both kinds of formal system: the context will
clearly determine, for the various systems taken into account, which constructive
properties are involved. Thus, we simply say that a set of formulas is constructive if
it has either the properties (Dp) and (Ed) or the properties (Dpopen) and (Edopen).

Now, we define what we mean by a constructive formal system and a constructive
calculus:

2.5. STRONGLY CONSTRUCTIVE FORMAL SYSTEMS 39

2.5.1 Definition (Constructive formal systems and calculi) We say that a
formal system S = (L, |∼,H) is constructive iff Theo(|∼) in constructive. Analo-
gously, we say that a calculus C = (C,SubPr) is constructive if the set Theo(C) is
constructive.

More generally, we say that a set of proofs Π is constructive if Theo(Π) is construc-
tive.

We remark that the above definition involves properties which are global for the
formal systems and calculi respectively. In particular, with respect to the notion of
calculus, this definition does not give any hint on how to find the constructive content
of a set of proofs in a subset of the calculus with a bounded logical complexity. On
the contrary, our aim is to define strong constructiveness of a calculus so that the
constructive content of a set of proofs can be extracted from a subset of the calculus
with a bounded logical complexity, without need of using the whole calculus. This
is the reason why we introduced the notions of generalized rule, R-subcalculus, and
uniformity.

Given a calculus C, we will say that it is strongly constructive if we can identify
a generalized rule allowing us, starting from a set of proofs [Π], to recover in the
calculus all the information needed to constructively “complete” the set Theo([Π]),
but only looking at a subset of the calculus whose degree is bounded. Hence, a key
point is that this characterization of strong constructiveness is meaningful if the
minimal R-subcalculus containing a set of proofs [Π] reasonably represents the set
of formulas which can be proved using only the information contained in the proofs
of [Π] and nothing else.

To give an example known in literature, let us consider the case of a set Π
consisting of a single proof π of SEQINT. In this case the constructive content
of π can be directly found in the set [π] of the subproofs of π (where the notion
of subproof is the standard one). In fact, intuitionistic first order sequent calculus
SEQINT enjoys cut-elimination and cut-free proofs have the following properties (see
e.g. [Takeuti, 1975, Girard, 1987]):

1. A cut-free proof π : `̀̀ A ∨ B directly contains a subproof of A or a subproof
of B;

2. A cut-free proof of π : `̀̀ ∃xA(x) directly contains a subproof of A(t/x), for
some term t.

Therefore, [π] is a constructive calculus. If we only consider cut-free proofs, it
is sufficient to require subcalculi to be closed under subproofs; in this case any
subcalculus is constructive and the minimum subcalculus of SEQINT containing the
proof π is the set [π] containing its subproofs.

The situation is slightly more complex when we introduce induction in first order
(intuitionistic) arithmetic. A cut-free induction proof

π : `̀̀ A(x) ∨B(x)

40 Chapter 2. FUNDAMENTALS

in general does not directly contain neither a π1 : `̀̀ A(x) nor a π2 : `̀̀ B(x). But,
for every numeral sn0, we can extract either a proof πsn0

1 : `̀̀ A(sn0) or a proof
πsn0

2 : `̀̀ B(sn0) in the following way. Let π : `̀̀ A(x) ∨ B(x) be our proof; for the
sake of simplicity, we assume that the induction rule has been applied only once, as
the last rule. Therefore π is as follows:

π ≡
π0 : `̀̀ A(0) ∨B(0) πsi : A(i) ∨B(i) `̀̀ A(si) ∨B(si)

A(x) ∨B(x)
Ind

By cut on π0, πs0, πs20, . . ., we can build a proof π∗ : `̀̀ A(sn0) ∨ B(sn0), which
does not contain applications of Ind; and we can apply cut-elimination to πsn0; we
obtain a cut-free proof π∗ : `̀̀ A(sn0) ∨ B(sn0), which directly contains a subproof
of A(sn0) or a subproof of B(sn0). Therefore, to extract information from π, we
need two operations:

1. Substitution: needed to obtain π0, πs0, πs20, . . .;

2. Cut: needed to obtain (for every n) πsn0 : `̀̀ A(sn0) ∨B(sn0).

A similar discussion can be made for the natural deduction calculi NDINT (for
intuitionistic first order logic) and NDHA (for first order intuitionistic arithmetic)
using normalized proofs.

According to the above example, we have that the information needed to extract
the constructive content of a proof π in SEQHA can be found in the subcalculus
of SEQHA containing SubPr(π) and closed under the rules Cut and Subst, that
is, this information is contained in a Cut ∪ Subst-subcalculus of SEQHA. This
justifies the notion of R-subcalculus we have introduced in the previous sections.
On the other hand, we remark that, given a proof π, we would like to extract the
information from a proof without introducing information more complex than the
one already contained if π. This is why, in the following fundamental definition, we
restrict ourselves to consider only non-increasing generalized rules.

2.5.2 Definition Let C = (C,SubPr) be a calculus over LA. We say that C is
strongly constructive iff there exists a generalized rule R such that:

1. R is a non-increasing rule;

2. C is uniformly R-closed;

3. For any Λ ⊆ C, Theo(R∗([Λ])) is constructive.

2.5.3 Definition A formal system S is strongly constructive iff there exists a calculus
C which agrees with S and is strongly constructive.

2.6. RELATIONS WITH PROGRAM SYNTHESIS 41

2.6 Relations with program synthesis

We believe that the notion of strongly constructive formal system is a key one
in program synthesis. To discuss this, let us us consider, for instance, a calculus
C = (C,SubPr) over the language LA of arithmetic, which is a strongly constructive
presentation for the formal system of intuitionistic arithmetic; let R be the non-
increasing generalized rule involved in the definition of strong constructiveness of C.
Moreover, let us suppose that this calculus contains a proof

π : `̀̀ ∃!zF (x1, . . . , xn, z) ,

where ∃!zF (x1, . . . , xn, z) is a formula in which the only free variables are x1, . . . , xn.
Now, the strong constructiveness of the calculus allows us to guarantee that it is pos-
sible to uniformly evaluate the formula ∃!zF (x1, . . . , xn, z) in it; that is, there exists
a constructive subset Π of proofs of the calculus C, whose degree is bounded (this is a
consequence of Proposition 2.4.8), where all the closed instances ∃!zF (t1, . . . , tn, z)
of the formula ∃!zF (x1, . . . , xn, z) are provable. Since Π is a constructive set of
proofs, it contains, for any t1, . . . , tn, a proof of a closed formula F (t1, . . . , t,t′) for
some closed term t′ of LA. This allows us to define the total function f from n-tuples
of closed terms of LA into closed terms of LA expressed by the formula

∃!zF (x1, . . . , xn, z) (2.4)

as follows:

For any n-tuple t1, . . . , tn of closed terms of LA, the value of f(t1, . . . , tn)
is the (only) closed term t′ in normal form such that a proof of F (t1, . . . , tn, t′)
belongs to Π.

In a quite similar way, if Π contains a proof

π : `̀̀ P (x1, . . . , xn) ∨ ¬P (x1, . . . , xn)

in which x1, . . . , xn are the only free variables of P (x1, . . . , xn), it is possible to
uniformly evaluate the formula P (x1, . . . , xn) ∨ ¬P (x1, . . . , xn) in a R-subcalculus
of C including [π]. This allows to define a predicate p over n-tuples of closed terms
of LA, expressed by the formula

P (x1, . . . , xn) ∨ ¬P (x1, . . . , xn) . (2.5)

Now, for the sake of simplicity, we informally call problem any formula P(x1, . . . , xn)
with either the form (2.4) or the form (2.5) (other kinds of problems could be defined
in a more extensive discussion). Hence, we formulate the following notion of general
(logical) synthesis method:

A general program synthesis method is any method allowing to extract
from a strongly constructive calculus containing a proof of a problem
P(x1, . . . , xn), a subset of proofs in which the problem P(x1, . . . , xn) is
uniformly evaluated.

42 Chapter 2. FUNDAMENTALS

In our formal setting, the abstract calculus ID(R, .) can be considered such a general
synthesis method. Indeed, ID(R,Seq([π])) can be seen as a (non-deterministic)
computational model and a proof of a problem

π : `̀̀ P(x1, . . . , xn)

can be seen as a (non-deterministic) algorithm to solve the problem P(x1, . . . , xn).
Namely, since, by Theorem 2.3.9,

ID(R,Seq([π])) �R C

(i.e. it is a generalized R-subcalculus of C) and R is non-increasing, this set of
proofs allows to uniformly evaluate all the closed instances of P(x1, . . . , xn). We
notice that, if C has the property that π(t1/x1, . . . , tn/xn) is a proof of the formula
P(t1/x1, . . . , tn/xn), then

ID(R,Seq([π(t1/x1, . . . , tn/xn)])) �R C

and hence this set contains sufficient information to solve the problem; in this sense,
the set of proofs ID(R,Seq([π(t1/x1, . . . , tn/xn)])) can be seen as a family of non-
deterministic (possibly unsuccessful) computations of the program (proof) π with
input values t1, . . . , tn, among which there is the successful one.

On the other hand, we notice that, even if the rule R is recursive, the set of
theorems of ID(R,Seq([π])) is recursively enumerable and hence search strategies
are in order to use ID(R,Seq([Π])) as a computational model.

An analysis of such search strategies is out of the scope of this Thesis, which
is mainly devoted to the study of the very notion of strong constructiveness. This
analysis will be the object of further studies.

Chapter 3

Exhibiting strongly constructive
logics

3.1 Generalities

The aim of this chapter and of the next is to convince the reader that the notion of
strongly constructive system is adequate for modeling the extraction of information
from constructive proofs and is more general than the one based on Normalization
and Cut-elimination. To this aim we will prove that a variety of formal systems is
strongly constructive. For some of these systems the Normalization Theorem and
the Cut-elimination Theorem hold, while others fail to meet these properties.

In particular, in this chapter we will prove that several interesting constructive
logics, including the intuitionistic one, are strongly constructive. Here, with log-
ics, we mean purely logical systems, without mathematical axioms; this allows us
to consider the notion of constructiveness related to open formulas (that is w.r.t.
(Dpopen) and (Edopen)). For such logics we will prove strong constructiveness ex-
hibiting strongly constructive calculi in pseudo-natural deduction-style. This choice
has been made for reasons of uniformity and simplicity only; indeed, the same result
can be proved using Gentzen’s sequent calculi or Hilbert-style calculi.

Our proofs will exhibit the minimal generalized rules needed to get strong con-
structiveness. In particular, we will show that closure under Cut and Subst is
sufficient to guarantee strong constructiveness (w.r.t (Dpopen) and (Edopen)) of intu-
itionistic logic and its extension with Kuroda principle. On the other hand, closure
under Cut, Subst and some restricted versions of⇒-introduction, ∀-introduction is
sufficient to guarantee strong constructiveness of Grzegorczyck logic, Kreisel-Putnam
logic, Scott logic. Finally, we will show that to obtain strong constructiveness for

43

44 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

systems obtained by adding a family of Harrop formulas to intuitionistic logic we
need closure under restricted versions of ∧, ⇒ and ∀ elimination. However, we re-
mark that no one of our proofs of strong constructiveness depends on Normalization
(or Cut-elimination) Theorems.

Hereafter, we will use the following notational convention about the Hilbert-style
calculi: given an Hilbert-style calculus H = (H0,H1) and a set of axioms-schemes
Γ, we will denote with

HINT + Γ

the Hilbert-style calculus obtained by adding the set of all the instances of the axiom
schemes in Γ to the set H0.

Since the formal systems treated in this Chapter are predicate intermediate log-
ics, and some discussions about their semantics are in order to give a detailed pre-
sentation, we briefly introduce the notions of intermediate logic and Kripke seman-
tics, to help people not acquainted with this material. For a detailed discussion on
these topics we refer the reader to [Ono, 1972, Troelstra, 1973a, Gabbay, 1981, ?, ?,
Avellone et al., 1996].

An intermediate (predicate) logic is any set L of formulas of L such that:

1. Theo(INT) ⊆ L ⊆ Theo(CL), where INT and CL indicate respectively the
formal system of intuitionistic and classical logic. (That is the set of all the
intuitionistically valid formulas is included in L and any formula of L is clas-
sically valid.)

2. L is closed under detachment (i.e., A ∈ L and A ⇒ B ∈ L implies B ∈ L).

3. L is closed under generalization (i.e., A(x) ∈ L implies ∀xA(x) ∈ L).

4. L is closed under predicate substitution (i.e., A ∈ L implies ξA ∈ L for every
predicate substitution ξ). For a formal definition of predicate substitution we
refer the reader to [Ono, 1972, Avellone et al., 1996].

Likewise, an intermediate propositional logic is any set L of formulas of the proposi-
tional language such that Theo(INTprop) ⊆ L ⊆ Theo(CLprop) (where INTprop and
CLprop are the formal system of intuitionistic propositional logic and the formal sys-
tem of classical propositional logics respectively), and L is closed under detachment
and propositional substitution.

A Kripke frame is a triple 〈P,≤, D〉, where 〈P,≤〉 is a non-empty partially ordered
set and D is a function associating, with every element α ∈ P a nonempty set D(α)
in such a way that, if α ≤ β in 〈P,≤〉, then D(α) ⊆ D(β). We call D(α) the
domain of α. We also associate with any element α ∈ P the extended language
Lα obtained by adding to the pure predicate language L the elements of D(α) as
constant symbols.

Given a Kripke-frame 〈P,≤, D〉, K = 〈P,≤, D, ‖−−〉 is a Kripke model built on
the frame 〈P,≤, D〉 if ‖−− (called the forcing relation) is a binary relation between

3.1. GENERALITIES 45

elements of P and closed atomic formulas of the corresponding extended languages,
such that

• if α‖−−A(c1, . . . , cn) (where c1, . . . , cn are constant symbols of Lα) then, for
any β ∈ P such that α ≤ β, β‖−−A(c1, . . . , cn).

In the propositional context a Kripke-frame is a partially ordered set 〈P,≤〉, and a
Kripke model characterized by such a frame is a triple K = 〈P,≤, ‖−−〉, where ‖−−
is a binary relation between elements of P and propositional variables such that, for
any propositional variable p, if α‖−−p then β‖−−p for any β ∈ P such that α ≤ β.

The forcing relation is extended to arbitrary formulas of the language as follows:

1. α‖−−B ∧ C iff α‖−−B and α‖−−C;

2. α‖−−B ∨ C iff either α‖−−B or α‖−−C;

3. α‖−−B ⇒ C iff, for any β ∈ P such that α ≤ β, β‖−−B implies β‖−−C;

4. α‖−−∃xB(x) iff there exists c ∈ D(α) such that α‖−−B(c/x);

5. α‖−−∀xB(x) iff, for any β ∈ P such that α ≤ β and for any c ∈ D(β),
β‖−−B(c/x).

We say that a formula A holds in K = 〈P,≤, D, ‖−−〉 iff, α‖−−∀A (α‖−−A in the
propositional case) for any α ∈ P , where ∀A is the universal closure of A. Now,
given a family F of Kripke-frames, we denote with K(F) the family of all the Kripke-
models built on the Kripke-frames in F . Finally, let us denote with L(K) the set of all
the formulas of L which hold in any Kripke model of K. We say that an intermediate
logic L is characterized by the family of Kripke frames F iff L = L(K(F)).

We conclude this presentation, recalling that intuitionistic predicate logic (that
is the set of theorems of HINT) is characterized by the family of all the Kripke-
frames.

Now, to conclude this section we briefly sketch the general line of the proofs of
strong constructiveness we provide in this Chapter. First of all, we will characterize
the formal system in hand by means of an Hilbert-style calculus H including HINT,
then we will give a pseudo-natural deduction presentationND for this formal system.
(We say pseudo-natural deduction calculus to mean that, for the specific axioms of
the logic in hand, we do not introduce a pair of rules, one of introduction and one
of elimination, according to the paradigms of the natural deduction calculi.) At this
point, we will introduce a suitable non-increasing generalized rule R and will prove
that the calculus ND is uniformly R-closed. Then we will consider the generalized
R-subcalculi ID(R,Seq([Π])) generated by sets Π of proofs of the calculus ND in
hand. All the constructiveness results will be proved by showing that, for every
Π ⊆ ND, ID(R,Seq([Π])) satisfies (Dpopen) and (Edopen). Thus, by Point (1) of
Theorem 2.3.9, we will get that every R-subcalculus of ND including [Π] satisfies
(Dpopen) and (Edopen). The techniques we will use to prove that ID(R,Seq([Π]))

46 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

satisfies (Dpopen) and (Edopen) will depend on the logics in hand; the choice of the
systems presented in this Chapter is mainly devoted to provide a good illustration
of the variety of such techniques. Finally, to prove the strong constructiveness of
the formal system generated by the various Hilbert-style systems H in hand, we
will use Proposition 2.4.11 and the fact that the involved calculi ND are uniformly
embedded in H.

3.2 Intuitionistic Logic

In the case of intuitionistic logic, to prove strong constructiveness it is enough to
consider the generalized rules Subst and Cut so defined:

Substitution rule (Subst).
The domain of Subst is the set of all the sequents, and, for every substitution
θ of terms for individual variables:

θΓ `̀̀ θ∆ ∈ Subst(Γ `̀̀ ∆) .

Cut rule (Cut).
The domain of Cut contains all the sequences of sequents which have the form
Γ1 `̀̀ H; Γ2,H `̀̀ A, and:

Γ1,Γ2 `̀̀ A ∈ Cut(Γ1 `̀̀ H; Γ2,H `̀̀ A) .

We will denote with RINT the union of these two generalized rules, that is:

RINT = Cut ∪ Subst

It is immediate to verify that this is a non-increasing rule. Our proof of strong
constructiveness is based on the following notion of formula evaluated in a set of
proofs.

3.2.1 Definition (Evaluation) Let Π be a set of proofs and A be a formula. We
say that A is evaluated in Π iff the following conditions hold:

(i). There is a proof π ∈ Π such that π : `̀̀ A;

(ii). According to the form of A, one of the following cases hold:

(a) A is atomic or negated;

(b) A ≡ B ∧ C, and both B and C are evaluated in Π;

(c) A ≡ B ∨ C, and either B is evaluated in Π or C is evaluated in Π;

(d) A ≡ B ⇒ C, and either B is not evaluated in Π or C is evaluated in Π;

(e) A ≡ ∃xB(x), and B(t/x) is evaluated in Π for some term t;

3.2. INTUITIONISTIC LOGIC 47

(f) A ≡ ∀xB(x), and, for any term t, B(t/x) is evaluated in Π.

We remark that in the above definition no assumption is made on the form of
the proofs in Π; this gives rise to a technique which is largely independent on the
presentation of the calculi.

The following lemma is fundamental to prove strong constructiveness of several
calculi by means of the above notion of formula evaluated in a set of proofs.

3.2.2 Lemma LetR be any generalized rule including Subst and Cut, let C be an
R-closed calculus and let Π be a set of proofs of C. For any π : Γ `̀̀ A ∈ Subst∗([Π]),
if Γ ⊆ Theo(ID(R,Seq([Π]))) then there exists τ : `̀̀ A ∈ ID(R,Seq([Π])).

Proof: Since, π : Γ `̀̀ A ∈ Subst∗([Π]) and the composition of substitutions is a
substitution, there must exist a substitution for individual variables θ and a proof
π′ ∈ [Π] such that Γ `̀̀ A ≡ θΓ′ `̀̀ θA′ and π′ : Γ′ `̀̀ A′. Since, Γ′ `̀̀ A′ ∈ Seq([Π]), by
definition of ID(R,Seq([Π])) there exists a proof tree

τ ′ : Γ′ `̀̀ A′ ∈ ID(R,Seq([Π])) .

But, ID(R,Seq([Π])) is Subst-closed, and hence there is a proof

τ ′′ : Γ `̀̀ A ∈ ID(R,Seq([Π])) .

Now, let Γ = {H1, . . . ,Hn}. Since Γ ⊆ Theo(ID(R,Seq([Π])), there exist proofs

τ1 : `̀̀ H1 , . . . , τn : `̀̀ Hn ∈ ID(R,Seq([Π])) .

But the calculus ID(R,Seq([Π])) is Cut-closed, and hence, by applying the Cut-rule
to the proofs

τ1 : `̀̀ H1 , . . . , τn : `̀̀ Hn and τ ′′ : {H1, . . . ,Hn} `̀̀ A

we obtain that ID(R,Seq([Π])) also contains a proof τ : `̀̀ A. 2

Let INT be the formal system generated by the Hilbert-style calculus HINT,
that is

INT = (L, |∼HINT
,HINT) .

Now, we give the proof of strong constructiveness for the formal system of intuition-
istic logic INT, by proving that the calculus NDINT, quoted in Section 1.2.2, which
is a presentation for INT (see Theorem 1.2.1), is a strongly constructive calculus
for it. However, we remark that the proof could be developed along the same lines
for the sequent calculus SEQINT and the Hilbert style calculus for intuitionistic logic
quoted in [Kleene, 1952], as well as the Hilbert-style calculus HINT defining INT.

First of all, to apply the results of Chapter 2, we need to prove that NDINT is
uniformly RINT-closed.

3.2.3 Proposition NDINT is uniformly RINT-closed.

48 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

Proof: To prove that NDINT is Subst-closed let us consider a proof π : Γ `̀̀ A ∈
NDINT, and a substitution on the individual variables θ. Since we can change the
names of the proper parameters of π in such a way that their set is disjunct from
the set of the free variables of π and from the set of the free variables occurring in
the terms that θ associates with the free variables of π (see Section 1.2.2), the tree
π′ obtained by applying the substitution θ to all the formulas which occur in the
proof π is a proof in NDINT. Moreover, it is a proof of the sequent θΓ `̀̀ θA and
dg(π′) = dg(π). To prove that NDINT is Cut-closed, let us consider two proofs
π1 : Γ `̀̀ H and π2 : ∆,H `̀̀ A of NDINT. The following is a proof of the sequent
Γ,∆ `̀̀ A in NDINT:

π′ ≡
π1 : Γ `̀̀ H

π2 : ∆,H `̀̀ A

∆ `̀̀ H ⇒ A
I⇒

Γ,∆ `̀̀ A
E⇒ .

Moreover,

dg(π′) = Max{dg(π1),dg(π2),dg(∆ `̀̀ H ⇒ A)} =
= Max{dg(π1),dg(π2),dg(∆,H `̀̀ A) + 1} .

Hence NDINT is uniformly RINT-closed w.r.t. the function φ : N → N such that
φ(x) = x + 1. 2

Now, we will prove that, for any set Π of proofs of NDINT, the information con-
tained in the subproofs of Π is sufficient to obtain a constructive generalized RINT-
subcalculus of NDINT containing Seq([Π]). This generalized RINT-subcalculus is
ID(RINT,Seq([Π])). To simplify the notation we set:

IDINT(Π) = ID(RINT,Seq(Π))

Before going into the details of the proof of the strong constructiveness ofNDINT,
let us consider the following trivial fact, which will be implicitly used in the following
result and, in general, in all the proofs of strong constructiveness we will develop
in this Thesis. Let Π be a set of proofs of a pseudo-natural deduction calculus.
If π ∈ [Π] and π1, . . . , πn are all the subproofs of π, then, for any substitution θ,
θπ1, . . . , θπn are all the subproofs of θπ. This implies that, if π ∈ Subst∗([Π]), then
all the subproofs of π belongs to Subst∗([Π]).

The following lemma is a key point of our proof of strong constructiveness of
NDINT.

3.2.4 Lemma Let Π be any set of proofs of NDINT. For any π : Γ `̀̀ A ∈
Subst∗([Π]), if Γ is evaluated in IDINT([Π]) then A is evaluated in IDINT([Π]).

Proof: We will denote with π, π1, π2, . . . the proofs of NDINT and with τ, τ ′, τ1, . . .
the ones of IDINT([Π]). Since Γ = {H1, . . . ,Hn} is evaluated in IDINT([Π]), by
Point (i) of Definition 3.2.1 we have that there exist proofs

τ1 : `̀̀ H1 , . . . , τn : `̀̀ Hn ∈ ID(R,Seq([Π])) ,

3.2. INTUITIONISTIC LOGIC 49

and hence Γ ⊆ Theo(IDINT([Π])). By Lemma 3.2.2, this implies that there exists a
proof

τ ′ : `̀̀ A ∈ IDINT([Π]) .

This proves that A satisfies Point (i) of Definition 3.2.1. To complete the proof, we
must show that A also satisfies Point (ii) of this definition. We prove this point by
induction on depth(π).
Basis: If depth(π) = 0 then the only rule which occurs in π must be an axiom, that
is A ∈ Γ. Thus, A is trivially evaluated in IDINT([Π]).
Step: We assume that our assertion holds for any proof π′ : Γ′ `̀̀ A′ ∈ Subst∗([Π])
such that depth(π′) ≤ h (h ≥ 0). We prove it for π : Γ `̀̀ A with depth(π) = h + 1.
The proof goes on by cases according to the last rule applied in π.

• Conjunction Introduction.

π : Γ `̀̀ A ≡
π1 : Γ1 `̀̀ B π2 : Γ2 `̀̀ C

Γ `̀̀ B ∧ C
I∧

Since Γ = Γ1 ∪ Γ2, depth(π1) ≤ h and depth(π2) ≤ h, the application of the
induction hypothesis to π1 : Γ1 `̀̀ B and π2 : Γ2 `̀̀ C immediately yields that
both B and C are evaluated in IDINT([Π]). Hence, by definition, B ∧ C is
evaluated in IDINT([Π]).

• Conjunction Elimination.

π : Γ `̀̀ A ≡
π1 : Γ `̀̀ B ∧ C

Γ `̀̀ B
E∧ (or π : Γ `̀̀ A ≡

π1 : Γ `̀̀ B ∧ C

Γ `̀̀ C
E∧)

Since depth(π1) ≤ h, we immediately have, by induction hypothesis, that B∧C
is evaluated in IDINT([Π]). This implies that both B and C are evaluated in
this set of proofs.

• Disjunction Introduction.

π : Γ `̀̀ A ≡
π1 : Γ `̀̀ B

Γ `̀̀ B ∨ C
I∨ (or π : Γ `̀̀ A ≡

π1 : Γ `̀̀ C

Γ `̀̀ B ∨ C
I∨)

Since depth(π1) ≤ h, we immediately have that B (or C) is evaluated in
IDINT([Π]); this implies that B ∨ C is evaluated in this set of proofs.

• Disjunction Elimination.

π : Γ `̀̀ A ≡
π1 : Γ1 `̀̀ B ∨ C π2 : Γ2, B `̀̀ A π3 : Γ3, C `̀̀ A

Γ `̀̀ A
E∨

Since Γ1 is included in Γ and the depth of π1 is less than or equal to h,
we can apply the induction hypothesis to π1 : Γ1 `̀̀ B ∨ C, to deduce that

50 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

B ∨ C is evaluated in IDINT([Π]). Thus, either B is evaluated in IDINT([Π])
or C is evaluated in IDINT([Π]). Hence, we obtain that A is evaluated in
IDINT([Π]), in the former case by applying the induction hypothesis to the
proof π2 : Γ2, B `̀̀ A, in the latter case by applying the induction hypothesis
to the proof π3 : Γ3, C `̀̀ A.

• Implication Introduction.

π : Γ `̀̀ A ≡
π1 : Γ, B `̀̀ C

Γ `̀̀ B ⇒ C
I⇒

By induction hypothesis, if B is evaluated in IDINT([Π]) then C is evaluated
in IDINT([Π]). Hence the assertion.

• Implication Elimination.

π : Γ `̀̀ A ≡
π1 : Γ1 `̀̀ B ⇒ C π2 : Γ2 `̀̀ B

Γ `̀̀ C
E⇒

By induction hypothesis B ⇒ C and B are evaluated in IDINT([Π]); by defi-
nition, this implies that C is evaluated in IDINT([Π]).

• Exists Introduction.

π : Γ `̀̀ A ≡
π1 : Γ `̀̀ B(t/x)

Γ `̀̀ ∃xB(x)
I∃

By induction hypothesis, B(t/x) is evaluated in IDINT([Π]) and this immedi-
ately implies, by definition, that ∃xB(x) is evaluated in IDINT([Π]).

• Exists Elimination.

π : Γ `̀̀ A ≡
π1 : Γ1 `̀̀ ∃xB(x) πs : Γ2, B(s/x) `̀̀ A

Γ `̀̀ A
E∃

By applying the induction hypothesis to π1, we deduce that there exists a
term t such that B(t/x) is evaluated in IDINT([Π]). Now, since s is the proper
parameter of the exists elimination, it does not occur free in Γ2 and in A.
Thus, the tree πs(t/s), obtained by replacing any free occurrence of s in any
formula of the proof πs with t, is a proof of the sequent Γ2, B(t/x) `̀̀ A in
NDINT. Moreover, since πs ∈ [Π], we also have that

πs(t/s) : Γ2, B(t/x) `̀̀ A ∈ Subst∗([Π]) .

Now, since Γ2, B(t/x) is evaluated in IDINT([Π]), by induction hypothesis on
πs[t/s], we obtain that A is evaluated in IDINT([Π]).

3.2. INTUITIONISTIC LOGIC 51

• For-all Introduction.

π : Γ `̀̀ A ≡
πs : Γ `̀̀ B(s/x)

Γ `̀̀ ∀xB(x)
I∀

Let t be any term. Since s is the proper parameter of the application of the I∀–
rule, by our assumptions on the proper parameters of a proof, we immediately
have that the tree πs(t/s), obtained by replacing any free occurrence of s in
any formula of πs with t, is a proof of Γ `̀̀ B(t/x) in NDINT. Moreover,

πs(t/s) : Γ `̀̀ B(t/x) ∈ Subst∗([Π]) .

Now, by induction hypothesis on the latter proof, we obtain that B(t/x) is
evaluated in IDINT([Π]). Since t is any term of L, we have that B(t/x) is eval-
uate in IDINT([Π]) for any term t. That is, ∀xB(x) is evaluated in IDINT([Π]).

• For-all Elimination

π : Γ `̀̀ A ≡
π1 : Γ `̀̀ ∀xB(x)

Γ `̀̀ B(t/x)
E∀

By induction hypothesis, ∀xB(x) is evaluated in IDINT([Π]). This immediately
implies, by definition, that B(t/x) is evaluated in IDINT([Π]).

2

3.2.5 Corollary Let Π be a set of proofs of NDINT. For any proof τ : Γ `̀̀ A ∈
IDINT([Π]) and any substitution θ, if θΓ is evaluated in IDINT([Π]), then θA is
evaluated in IDINT([Π]).

Proof: First of all, we must show that there exists a proof of the sequent `̀̀ θA in
IDINT([Π]). Let Γ = {H1, . . . ,Hn}; since θΓ is evaluated in IDINT([Π]), by Point
(i) of Definition 3.2.1, there exist proofs

τ1 : `̀̀ θH1 , . . . , τn : `̀̀ θHn ∈ IDINT([Π]) .

Moreover, since IDINT([Π]) is Subst-closed, it also contains a proof

τ ′ : θΓ `̀̀ θA

and since IDINT([Π]) is Cut-closed, this implies that in this calculus a proof

τ ′′ : `̀̀ θA

exists. This prove that A satisfies Point (i) of Definition 3.2.1. To prove Point (ii)
we proceed by induction on the Cut-depth of τ : Γ `̀̀ A, i.e. on the number of
Cut-rules applied in τ .

52 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

Basis: If no Cut-rule is applied in τ , then, by definition of IDINT([Π]), τ : Γ `̀̀ A
is obtained by applying a (possibly empty) sequence of Subst-rules to a sequent in
Seq([Π]). Thus, there exists a proof π′ : Γ′ `̀̀ A′ ∈ [Π] such that θ′Γ′ `̀̀ θ′A′ ≡ Γ `̀̀ A
for some substitution θ′. Then, Subst∗([Π]) also contains a proof of the sequent
θΓ `̀̀ θA ≡ θθ′Γ′ `̀̀ θθ′A′. Since θΓ is evaluated in IDINT([Π]), by Lemma 3.2.4, we
have that θA is evaluated in IDINT([Π]).
Step: The Cut-depth of τ is h + 1 (h ≥ 0), namely τ : Γ `̀̀ A is:

τ1 : Γ′1 `̀̀ H τ2 : Γ′2,H `̀̀ A′

Cut

Γ′ `̀̀ A′

Subst

...
Subst

θ′Γ′ `̀̀ θ′A′

where Γ′ = Γ′1∪Γ′2, the Cut-depth of τ1, τ2 is less than or equal to h and τ ends with
a (possibly empty) sequence of applications of Subst. We prove that, if θΓ ≡ θθ′Γ′

is evaluated in IDINT([Π]), then θA ≡ θθ′A′ is evaluated in IDINT([Π]). Since
θθ′Γ1 ⊆ θθ′Γ′ is evaluated in IDINT([Π]) by induction hypothesis on the proof

τ1 : Γ′1 `̀̀ H
Subst

θθ′Γ′1 `̀̀ θθ′H

we get that, θθ′H is evaluated in IDINT([Π]). Hence, θθ′Γ′2, θθ
′H is evaluated in

IDINT([Π]), and thus, by induction hypothesis on the proof

τ2 : Γ′2,H `̀̀ A′

Subst

θθ′Γ′2, θθ
′H `̀̀ θθ′A′

we get that θθ′A′ is evaluated in IDINT([Π]). 2

3.2.6 Corollary Let Π be any set of proofs of NDINT. Then IDINT([Π]) satisfies
(Dpopen) and (Edopen).

Proof: Let A ∨ B ∈ Theo(IDINT([Π])); then there exists a proof τ : `̀̀ A ∨ B
in IDINT([Π]). Since the empty set of premises is evaluated in IDINT([Π]), by
Corollary 3.2.5 we immediately have that A ∨ B is evaluated in IDINT([Π]). By
definition of evaluation, it follows that either A is evaluated in IDINT([Π]) or B
is evaluated in IDINT([Π]). Hence, by Point (i) of the definition of evaluation,
we get that either A ∈ Theo(IDINT([Π])) or B ∈ Theo(IDINT([Π])). This means
that Theo(IDINT([Π])) satisfies (Dpopen). The proof that Theo(IDINT([Π])) satisfies
(Edopen) is analogous. 2

The previous corollary allows us to prove the strong constructiveness result for
the calculus NDINT.

3.3. KURODA LOGIC 53

3.2.7 Theorem (SCR-NDINT) NDINT is a strongly constructive calculus w.r.t.
(Dpopen) and (Edopen).

Proof: We already know that RINT is a non increasing rule and, by Proposi-
tion 3.2.3, that NDINT is uniformly RINT-closed. Hence, the proof of strong con-
structiveness of NDINT amounts to show that, for any set of proofs Π of NDINT,
R∗

INT([Π]) is constructive w.r.t. (Dpopen) and (Edopen). But, by Point (i) of Propo-
sition 2.3.8,

R∗
INT([Π]) ≈ IDINT([Π])

and, by Corollary 3.2.6, IDINT([Π]) is constructive w.r.t. (Dpopen) and (Edopen) and
hence the assertion. 2

The proof of the strong constructiveness of the formal system INT immediately
follows from the previous theorem and from the fact that NDINT is uniformly em-
bedded in HINT. The latter fact has been stated in Theorem 2.4.3 and implies
that NDINT agrees with the formal system INT according to Proposition 2.4.11.
Therefore:

3.2.8 Theorem (SCR-INT) INT is a strongly constructive formal system w.r.t.
(Dpopen) and (Edopen). 2

To conclude this section, we remark that any usual sequent calculus for INT can
be proved to be a strongly constructive calculus, and this also holds for formulations
of sequent calculi which do not meet the Cut-elimination property such as the one
given in [Miglioli and Ornaghi, 1979].

3.3 Kuroda Logic

Now, we consider the Kuroda Principle, that is the axiom schema:

(Kur) ∀x¬¬A(x) ⇒ ¬¬∀xA(x) .

This principle has an important role with respect to classical logic in the following
sense: let L be any intermediate (predicate) logic, including all the instances of the
axiom schema (Kur); let Γ be any set of formulas and let Γ + L and Γ + CL denote
respectively the closure with respect to modus ponens and generalization of Γ ∪ L
and Γ ∪CL (CL being classical logic). Then Γ + L is consistent iff Γ + CL is (see
[Gabbay, 1981, Avellone et al., 1996, Miglioli et al., 1997]).

(Kur) is often quoted in the following equivalent form:

(Kur′) ¬¬∀x(A(x) ∨ ¬A(x)) .

As it is well known (see e.g. [Kleene, 1952, Troelstra, 1973a]), these principles are
classically valid but not intuitionistically valid. A Kripke model for intuitionistic
logic which is a counter-model for (Kur′) is shown in [Smorynski, 1973]. Now, let

HKur = HINT + {(Kur)} ,

54 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

that is HKur is the Hilbert-style calculus obtained by adding all the instances of the
axiom schema (Kur) to the set of axioms of HINT. We denote with Kur the formal
system generated by HKur. The intermediate logic determined by Kur, that is the
set of theorems of the formal system Kur, is characterized by the family of Kripke
frames with final elements. That is the family consisting of all the Kripke frames
〈P,≤, D〉 with the following property: for any α ∈ P there exists β ∈ P such that,
for any γ ∈ P , if β ≤ γ then β = γ.

The axiom schema (Kur) can be expressed with the following rule in the style of
a pseudo-natural calculus:

π : Γ `̀̀ ∀x¬¬A(x)

Γ `̀̀ ¬¬∀xA(x)
Kur

NDKur will denote the pseudo-natural deduction calculus obtained by adding the
Kur-rule to NDINT. It is easy to verify that NDKur is a presentation for the formal
system Kur. Moreover, the following result immediately follows from Proposition
3.2.3.

3.3.1 Proposition NDKur is uniformly RINT-closed. 2

The proof of strong constructiveness for NDKur goes on along the same lines as the
ones for NDINT. Only a slight modification of the main lemma is required.

3.3.2 Lemma Let Π be any set of proofs of NDKur. For any proof π : Γ `̀̀ A ∈
Subst∗([Π]), if Γ is evaluated in IDINT([Π]), then A is evaluated in IDINT([Π]).

Proof: `̀̀ A ∈ Seq(IDINT([Π])) follows from Lemma 3.2.2. The proof of Point (ii)
of Definition 3.2.1 is analogous to the one of Lemma 3.3.2. It goes on by induction
on the depth of the proof π ∈ C. We only have to treat the new case corresponding
to the Kur-rule. But this proof is trivial; in fact, if π : Γ `̀̀ A is a proof ending with
an application of the Kur-rule, A must be a negated formula and negated formulas
only need to be provable in IDINT([Π]) to be evaluated in this set. 2

Hence, similarly to Section 3.2, we can prove the following results.

3.3.3 Theorem (SCR-NDKur) NDKur is a strongly constructive calculus w.r.t.
(Dpopen) and (Edopen). 2

3.3.4 Corollary (SCR-Kur) Kur is a strongly constructive formal system w.r.t.
(Dpopen) and (Edopen). 2

3.4. GRZEGORCZYCK LOGIC 55

3.4 Grzegorczyck Logic

Another interesting principle quoted in [Troelstra, 1973a] is the Grzegorczyck Prin-
ciple:

(Grz) ∀x(A(x) ∨B) ⇒ ∀xA(x) ∨B ,

under the condition that x is not free in B.
It is immediate to verify that (Grz) is classically valid, but it is not intuitionisti-

cally valid. A Kripke model for intuitionistic logic which is a counter-model for it is
quoted in [Smorynski, 1973]. (Grz) can be expressed with the following rule in the
style of a pseudo-natural calculus:

π : Γ `̀̀ ∀x(A(x) ∨B)

Γ `̀̀ ∀xA(x) ∨B
Grz

with x not occurring free in B.
Grzegorczyck logic is the formal system Grz generated by the Hilbert-style cal-

culus obtained by adding all instances of the axiom schema (Grz) to HINT, that
is

HGrz = HINT + {(Grz)} .

The intermediate logic determined by this formal system, that is the set of theo-
rems of HGrz, is characterized by the Kripke frames with constant domains (see
[Görnemann, 1971, Smorynski, 1973, Gabbay, 1981]), that is Kripke frames 〈P,≤
, D〉 where D is a constant function. The pseudo-natural deduction calculus NDGrz

is obtained by adding the Grz-rule to NDINT. It is easy to verify that NDGrz is a
presentation for the formal system Grz.

To prove the strong constructiveness of NDGrz we need to extend the generalized
rule RINT with a restricted form of the generalization rule.

• R-Gen is the generalized rule whose domain consists of all the sequences of
sequents of L of the form `̀̀ A(x); `̀̀ ∀xA(x) ∨B, and such that:

`̀̀ ∀xA(x) ∈ R-Gen(`̀̀ A(x); `̀̀ ∀xA(x) ∨B) .

Because of the presence of the sequent `̀̀ ∀xA(x)∨B, this rule is non-increasing and
hence also the compound rule

RGrz = Cut ∪ Subst ∪R-Gen

is non increasing. We remark that the non-restricted version of the generalized
rule, Gen, whose domain consists of all the sequents of the form A(x) and is such
that `̀̀ ∀xA(x) ∈ Gen(`̀̀ A(x)), is evidently an increasing rule. This justifies the
restriction we introduce.

Since NDGrz contains the rule of I∀, the following proposition is an immediate
consequence of Proposition 3.2.3.

3.4.1 Proposition NDGrz is uniformly RGrz-closed. 2

56 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

Now, we will prove that, for any set Π of proofs of NDGrz, the information
contained in the subproofs of Π is sufficient to obtain a constructive generalized
RGrz-subcalculus. This generalized subcalculus is:

IDGrz(Π) = ID(RGrz,Seq(Π))

3.4.2 Lemma Let Π be any set of proofs of NDGrz. For any proof π : Γ `̀̀ A ∈
Subst∗([Π]), if Γ is evaluated in IDGrz([Π]), then A is evaluated in IDGrz([Π]).

Proof: `̀̀ A ∈ IDGrz([Π]) follows from Lemma 3.2.2. The proof of Point (ii) goes
on by induction on depth(π). The basis step does not require any change, and the
induction step only requires the treatment of the Grz-rule.

• Grz-rule.

π : Γ `̀̀ A ≡
π1 : Γ `̀̀ ∀x(B(x) ∨ C)

Γ `̀̀ ∀xB(x) ∨ C
Grz

Let us assume that Γ is evaluated in IDGrz([Π]). Since we have proved Point
(i) of the definition of evaluation for the formula ∀xB(x) ∨ C, there exists a
proof

τ : `̀̀ ∀xB(x) ∨ C ∈ IDGrz([Π]) .

By applying the induction hypothesis to the proof π1 : Γ `̀̀ ∀x(B(x)∨C), we get
that ∀x(B(x)∨C) is evaluated in IDGrz([Π]). Let us consider any term t of the
language L; then, by definition, we deduce that (B(t/x)∨C) must be evaluated
in IDGrz([Π]). This implies that either B(t/x) is evaluated in IDGrz([Π]) or
C is evaluated in IDGrz([Π]). In the latter case we immediately deduce that
∀xB(x) ∨ C is evaluated in IDGrz([Π]). If C is not evaluated in IDGrz([Π]),
from the former case we deduce that, for any term t, B(t/x) is evaluated in
IDGrz([Π]). Hence, to prove that ∀xB(x) is evaluated in IDGrz([Π]) we only
have to show that this formula has a proof in IDGrz([Π]). But B(x) is evaluated
in IDGrz([Π]), hence there exists a proof

τ ′ : `̀̀ B(x) ∈ IDGrz([Π]) .

By the existence of the proofs τ and τ ′ in IDGrz([Π]), and by the closure of
IDGrz([Π]) under R-Gen, we immediately deduce that there exists

τ ′′ : `̀̀ ∀xB(x) ∈ IDGrz([Π]) .

This concludes the proof.

2

3.4.3 Corollary Let Π be any set of proofs of NDINT. For any proof τ : Γ `̀̀
A ∈ IDGrz([Π]) and any substitution θ, if θΓ is evaluated in IDGrz([Π]), then θA is
evaluated in IDGrz([Π]).

3.4. GRZEGORCZYCK LOGIC 57

Proof: The proof of the fact that the formula θA satisfies Point (i) of the definition
of evaluation coincides with the one given in Corollary 3.2.5. Therefore, there exists
a proof

τ ′ : `̀̀ θA ∈ IDGrz([Π]) . (3.1)

To prove Point (ii) of the definition of evaluation we proceed by induction on the
(Cut,R-Gen)-depth of τ : Γ `̀̀ A, i.e. on the number of (Cut,R-Gen)-rules ap-
plied in τ .
Basis: If no Cut-rule and no R-Gen-rule occur in τ , then, by definition of the
calculus IDGrz([Π]), τ : Γ `̀̀ A is obtained by applying a (possibly empty) sequence
of Subst-rules to a sequent in [Π]. Thus, there exists a proof τ ′ : Γ′ `̀̀ A′ ∈ [Π]
such that θ′Γ′ `̀̀ θ′A ≡ Γ `̀̀ A for some substitution θ′. This implies that also the
sequent θΓ `̀̀ θA ≡ θθ′Γ′ `̀̀ θθ′A′ has a proof in Subst∗([Π]). Since θΓ is evaluated
in IDGrz([Π]), by Lemma 3.4.2 we have that θA is evaluated in IDGrz([Π]).
Step: The (Cut,R-Gen)-depth of τ is h+1 (h ≥ 0). We have two cases. If the last
between the rules Cut and R-Gen applied in the proof τ is Cut, then the proof
coincides with the one given for Corollary 3.2.5. Otherwise, if the last between the
rules Cut and R-Gen applied in τ is R-Gen, then the proof τ has the following
form:

τ1 : `̀̀ A′(x) τ2 : `̀̀ ∀xA′(x) ∨B′

R-Gen

`̀̀ ∀xA′(x)
Subst

...
Subst

`̀̀ θ′∀xA′(x)

where Γ = ∅, θ′∀xA′(x) ≡ A, the Cut,R-Gen-depth of τ1, τ2 is less than or equal to
h and τ ends with a (possibly empty) sequence of applications of Subst. Therefore,
we have to prove that θθ′∀xA′(x) is evaluated in IDGrz([Π]). We already know, by
(3.1), that θA ≡ θθ′∀xA′(x) has a proof in IDGrz([Π]), and so we only have to prove
that, for any term t, θθ′A(t/x) is evaluated in IDGrz([Π]). Let us consider the proof
τ1; since its (Cut,R-Gen)-depth is less than h+1, the (Cut,R-Gen)-depth of the
proof

τ1 : `̀̀ A′(x)
Subst

`̀̀ A′(t/x)
Subst

`̀̀ θθ′A′(t/x)

is still less than h + 1. Hence, by induction hypothesis, θθ′A(t/x) is evaluated in
IDGrz([Π]). This concludes the proof. 2

By Lemma 3.4.2 and the previous Corollary, we can prove, like the Theorems of
strong constructiveness for NDINT and INT, the following facts:

58 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

3.4.4 Theorem (SCR-NDGrz) NDGrz is a strongly constructive calculus w.r.t.
(Dpopen) and (Edopen). 2

3.4.5 Theorem (SCR-Grz) Grz is a strongly constructive formal system w.r.t.
(Dpopen) and (Edopen). 2

3.5 Kreisel-Putnam Logic

In this section we study the formal system we call Kreisel-Putnam Logic. This is the
formal system KP generated by the Hilbert-style calculus

HKP = HINT + {(KP∨), (KP∃)}

obtained by adding to the axioms of HINT all the instances of the following axiom
schemes:

(KP∨) (¬A ⇒ B ∨ C) ⇒ (¬A ⇒ B) ∨ (¬A ⇒ C)
(KP∃) (¬A ⇒ ∃xB(x)) ⇒ ∃x(¬A ⇒ B(x))

The first of these axiom-schemes is well known to every people working in interme-
diate propositional logics [Kreisel and Putnam, 1957, Gabbay, 1970, Gabbay, 1981].
Indeed the propositional logic obtained by adding the axiom schema (KP∨) to propo-
sitional intuitionistic logic has been the first counterexample to Lukasiewicz’s conjec-
ture of 1952 (see [Lukasiewicz, 1952]), asserting that intuitionistic propositional logic
is the greatest consistent and constructive propositional system closed under sub-
stitution of propositional variables and modus-ponens. The second axiom schema,
which is also known in the area of constructivism as (IP) ([Troelstra, 1973a]), natu-
rally completes the meaning of the former at the predicate level. Both these princi-
ples are classically valid but not intuitionistically valid, and the formal system KP
is a constructive intermediate logic (see e.g. [Avellone et al., 1996]).

(KP∨) and (KP∃) can be expressed with the following pseudo-natural deduction
rules

Γ,¬A `̀̀ B ∨ C

Γ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C)
KP∨

Γ,¬A `̀̀ ∃xB(x)

Γ `̀̀ ∃x(¬A ⇒ B(x))
KP∃

NDKP is the pseudo-natural deduction calculus obtained by adding the rules KP∃
and KP∨ to NDINT. It is easy to verify that NDKP is a presentation for the formal
system KP.

Now, we introduce the generalized rules R-In⇒∨ and R-In⇒∃ corresponding to
restricted version of ⇒-introduction.

• R-In⇒∨ is the generalized rule whose domain is the set containing, for all
formulas A,B, C and all sets of formulas Γ,∆ with ¬A 6∈ Γ, the sequences of

3.5. KREISEL-PUTNAM LOGIC 59

sequents σ∗ having one of the following forms:

σ∗ ≡ Γ,¬A `̀̀ B;∆ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C)
σ∗ ≡ Γ `̀̀ B;∆ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C)
σ∗ ≡ Γ,¬A `̀̀ C;∆ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C)
σ∗ ≡ Γ `̀̀ C;∆ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C)

and such that:

Γ,∆ `̀̀ ¬A ⇒ B ∈ R-In⇒∨(Γ `̀̀ B;∆ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C))
Γ,∆ `̀̀ ¬A ⇒ B ∈ R-In⇒∨(Γ,¬A `̀̀ B;∆ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C))
Γ,∆ `̀̀ ¬A ⇒ C ∈ R-In⇒∨(Γ `̀̀ C;∆ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C))
Γ,∆ `̀̀ ¬A ⇒ C ∈ R-In⇒∨(Γ,¬A `̀̀ C;∆ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C))

• R-In⇒∃ is the the generalized rule whose domain is the set containing, for all
formulas A,B(x) and all sets of formulas Γ,∆ with ¬A 6∈ Γ, the sequences of
sequents σ∗ having one of the following forms:

σ∗ ≡ Γ,¬A `̀̀ B(t);∆ `̀̀ ¬A ⇒ ∃xB(x)
σ∗ ≡ Γ `̀̀ B(t);∆ `̀̀ ¬A ⇒ ∃xB(x)

and such that

Γ,∆ `̀̀ ¬A ⇒ B(t) ∈ R-In⇒∃(Γ `̀̀ B(t);∆ `̀̀ ¬A ⇒ ∃xB(x))
Γ,∆ `̀̀ ¬A ⇒ B(t) ∈ R-In⇒∃(Γ,¬A `̀̀ B(t);∆ `̀̀ ¬A ⇒ ∃xB(x)) .

Now, we define

RKP = Cut ∪ Subst ∪R-In⇒∨ ∪R-In⇒∃ .

We remark that, the restriction on the domains of R-In⇒∨ and R-In⇒∃ prevents
RKP from being an increasing rule. It is immediate to prove thatNDKP is uniformly
RKP-closed.

3.5.1 Proposition NDKP is uniformly RKP-closed. 2

To prove the strong constructiveness of NDKP, we need a more complex defini-
tion of evaluation in a set of proofs.

3.5.2 Definition (Neg-evaluation) Let Π be a set of proofs, let Neg be a set of
negated formulas and let A be a formula. We say that A is Neg-evaluated in Π iff
the following properties hold:

60 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

(i) Either A ∈ Neg or there is a proof π ∈ Π such that π : Γ `̀̀ A and Γ ⊆ Neg;

(ii) According to the form of A, one of the following cases holds:

(a) A is atomic or negated;

(b) A ≡ B ∧ C, and both B and C are Neg-evaluated in Π;

(c) A ≡ B ∨ C, and either B is Neg-evaluated in Π or C is Neg-evaluated in
Π;

(d) A ≡ B ⇒ C, and, for any set of negated formulas Neg′ including Neg, if
B is Neg′-evaluated in Π then C is Neg′-evaluated in Π;

(e) A ≡ ∃xB(x), and B(t/x) is Neg-evaluated in Π for some term t;

(f) A ≡ ∀xB(x), and, for any term t, A(t/x) is Neg-evaluated in Π.

The following properties will be needed.

3.5.3 Proposition Let Neg be a set of negated formulas, let Π be a set of proofs
and let A be a formula. If A is Neg-evaluated in Π then A is Neg′-evaluated in Π
for any set of negated formulas Neg′ including Neg. 2

3.5.4 Proposition Let Π be a Cut-closed set of proofs, let Neg be a set of negated
formulas and let A and H be arbitrary formulas. If A is Neg ∪ {¬H}-evaluated in
Π and ¬H is Neg-evaluated in Π, then A is Neg-evaluated in Π.

Proof: First of all, we must prove that A satisfies condition (i) of Definition 3.5.2.
Let us suppose that A 6∈ Neg. Then, we must show that there exists a proof

π′ : Γ `̀̀ A ∈ Π

with Γ ⊆ Neg. Now, since A is Neg ∪ {¬H}-evaluated in IDKP([Π]), there exists a
proof

π1 : ∆1 ∪ {¬H} `̀̀ A ∈ Π

with ∆1 ⊆ Neg. Moreover, since the formula ¬H is Neg-evaluated in Π, then either
¬H ∈ Neg, and this implies that we can assume π′ to be the proof π1 itself, or there
exists a proof

π2 : ∆2 `̀̀ ¬H ∈ Π

such that ∆2 ⊆ Neg. Now, since Π is Cut-closed, by the presence in Π of the proofs
π1 and π2, we get that there exists a proof

π : ∆1,∆2 `̀̀ A ∈ Π

with ∆1 ∪∆2 ⊆ Neg. This concludes the proof of Point (i).
To prove that A satisfies Point (ii) of Definition 3.5.2, we proceed by induction

on the complexity of the formula A. If A is atomic or negated, then the existence
of the proof π in Π is enough to guarantee that it is Neg-evaluated in Π. If A is

3.5. KREISEL-PUTNAM LOGIC 61

B ∧ C, B ∨ C, ∀xB(x) or ∃xB(x), then the proof easily follows from the induction
hypothesis. The only interesting case is A ≡ B ⇒ C. Let us suppose that Neg′ is a
set of negated formulas including Neg, and B is Neg′-evaluated in Π. By Proposition
3.5.3 we have that B is also Neg′ ∪ {¬H}-evaluated in Π. Now, since

Neg′ ∪ {¬H} ⊇ Neg ∪ {¬H}

and B ⇒ C is Neg ∪ {¬H}-evaluated in Π, it is also Neg′ ∪ {¬H}-evaluated in Π.
But B ⇒ C and B Neg′ ∪ {¬H}-evaluated in Π imply, by definition, that C is
Neg′ ∪ {¬H}-evaluated in Π. 2

Now, let us consider the calculus:

IDKP(Π) = ID(RKP,Seq(Π)) .

3.5.5 Lemma Let Π be a set of proofs of NDKP. For every π : Γ `̀̀ H ∈
Subst∗([Π]) and for every set of negated formulas Neg, if Γ is Neg-evaluated in
IDKP([Π]), then H is Neg-evaluated in IDKP([Π]).

Proof: Let us consider an arbitrary set of negated formulas Neg and let us suppose
Γ to be Neg-evaluated in IDKP([Π]). To prove Point (i) of Definition 3.5.2, let us
suppose that H 6∈ Neg. Then we must show that there exists a proof

τ : ∆ `̀̀ H ∈ IDKP([Π])

with ∆ ⊆ Neg. First of all, we notice that π ∈ Subst∗([Π]) implies that there
exist π′ : Γ′ `̀̀ A′ ∈ [Π] and a substitution θ of individual variables such that
θΓ′ `̀̀ θA′ ≡ Γ `̀̀ A. Thus, by its definition, the set of proofs IDKP([Π]) contains
a proof of the sequent Γ′ `̀̀ A′ and hence, since IDKP([Π]) is Subst-closed, there
exists a proof

τ ′ : Γ `̀̀ H ∈ IDKP([Π]). (3.2)

Now, since Γ is Neg-evaluated in IDKP([Π]) we can write Γ = ∆0 ∪ {H1, . . . ,Hn}
where ∆0 and {H1, . . . ,Hn} are disjoint sets of formulas, ∆0 ⊆ Neg and there exist
proofs

τ1 : ∆1 `̀̀ H1 , . . . , τn : ∆n `̀̀ Hn ∈ IDKP([Π]) (3.3)

with ∆1 ⊆ Neg, . . . ,∆n ⊆ Neg. By the presence in IDKP([Π]) of the proofs τ ′ (3.2)
and τ1, . . . , τn (3.3), and by the closure of IDKP([Π]) under the Cut-rule, we get
that also the proof

τ∗ : ∆0 ∪ . . . ∪∆n `̀̀ H

is in IDKP([Π]), and since ∆0 ∪ . . . ∪∆n ⊆ Neg, we have the assertion.
Now, we prove by induction on depth(π) that H satisfies condition (ii) of Defi-

nition 3.5.2.

62 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

Basis: If depth(π) = 0 then the only rule which occurs in π must be an assumption
introduction, that is H ∈ Γ. Thus, H is trivially Neg-evaluated in IDKP([Π]).
Step: We assume that our assertion holds for any proof π′ : Γ′ `̀̀ A′ ∈ Subst∗([Π])
such that depth(π′) ≤ h (h ≥ 0), and let us suppose that depth(π) = h + 1. The
proof proceeds by cases on the last rule applied in π; here the interesting cases are
the implication introduction and the KP-rules.

• Implication Introduction.

π : Γ `̀̀ H ≡
π1 : Γ, B `̀̀ C

Γ `̀̀ B ⇒ C
I⇒

with H ≡ B ⇒ C. Let Neg′ be any set of negated formulas such that
Neg ⊆ Neg′. Since Γ is Neg-evaluated in IDKP([Π]), by Proposition 3.5.3 it
follows that Γ is Neg′-evaluated in IDKP([Π]) too. Now, if B is Neg′-evaluated
in IDKP([Π]), then all the premises of the proof π1 are Neg′-evaluated in
IDKP([Π]), therefore, by induction hypothesis, C is Neg′-evaluated in IDKP([Π]).
Hence H ≡ B ⇒ C is Neg-evaluated in IDKP([Π]).

• Rule (KP∨).

π : Γ `̀̀ H ≡
π1 : Γ,¬A `̀̀ B ∨ C

Γ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C)
KP∨

We must prove that either ¬A ⇒ B is Neg-evaluated in IDKP([Π]) or ¬A ⇒
C is Neg-evaluated in IDKP([Π]). Since Γ is Neg-evaluated in IDKP([Π]),
Γ ∪ {¬A} is Neg ∪ {¬A}-evaluated in this set. Then, by induction hypothesis
on π1, either B or C is Neg ∪ {¬A}-evaluated in IDKP([Π]). For the sake of
definiteness, let us assume that B is the evaluated formula. This implies that
there exists a proof

τ : ∆ `̀̀ B ∈ IDKP([Π])

with ∆ ⊆ Neg ∪ {¬A}. By Point (i) of Definition 3.5.2, already proved in this
Lemma, taking H ≡ (¬A ⇒ B) ∨ (¬A ⇒ C) we get that there exists a proof

τ ′ : ∆′ `̀̀ (¬A ⇒ B) ∨ (¬A ⇒ C) ∈ IDKP([Π])

with ∆′ ⊆ Neg. By the existence of the proofs τ and τ ′ in IDKP([Π]), and by
the fact that IDKP([Π]) is R-In⇒∨-closed, we obtain the proof

π′′ : ∆′′ `̀̀ ¬A ⇒ B ∈ IDKP([Π])

with ∆′′ = (∆ ∪ ∆′) \ {¬A} if ¬A ∈ ∆ and ∆′′ = ∆ ∪ ∆′ otherwise. Hence,
∆′′ ⊆ Neg, and Point (i) of Definition 3.5.2 is satisfied. Now, let us suppose
that ¬A is Neg′-evaluated in IDKP([Π]) with Neg ⊆ Neg′. We already know
that B is Neg∪{¬A}-evaluated in IDKP([Π]), and hence, by Proposition 3.5.3,
it is also Neg′ ∪ {¬A}-evaluated in IDKP([Π]). Since ¬A is Neg′-evaluated, by
Proposition 3.5.4 we have that B is Neg′-evaluated. This concludes the proof
of this case.

3.5. KREISEL-PUTNAM LOGIC 63

• Rule (KP∃).

π : Γ `̀̀ H ≡
π1 : Γ,¬A `̀̀ ∃xB(x)

Γ `̀̀ ∃x(¬A ⇒ B(x))
KP∃ x 6∈ FV(A)

We have to prove that ¬A ⇒ B(t/x) is Neg-evaluated in IDKP([Π]), for some
term t of the language. Since Γ is Neg-evaluated in IDKP([Π]), we easily deduce
that the set Γ ∪ {¬A} is Neg ∪ {¬A}-evaluated in IDKP([Π]). Thus, applying
the induction hypothesis to the proof π1, we obtain that there exists a term t
such that B(t/x) is Neg ∪ {¬A}-evaluated in IDKP([Π]). Then, there exists a
proof

τ : ∆ `̀̀ B(t/x) ∈ IDKP([Π])

with ∆ ⊆ Neg ∪ {¬A}. Moreover, by Point (i) of Definition 3.5.2, already
proved in this Lemma, taking H ≡ ∃x(¬A ⇒ B(x)) we get that there exists a
proof

τ ′ : ∆′ `̀̀ ∃x(¬A ⇒ B(x)) ∈ IDKP([Π])

with ∆′ ⊆ Neg. By the existence of the proofs τ and τ ′ in IDKP([Π]) and
by the closure of IDKP([Π]) under the rule R-In⇒∃, we easily obtain that the
proof

τ ′′ : ∆′′ `̀̀ ¬A ⇒ B(t/x) ∈ IDKP([Π])

with ∆′′ = (∆ ∪ ∆′) \ {¬A} if ¬A ∈ ∆ and ∆′′ = ∆ ∪ ∆′ otherwise. Thus,
∆′′ ⊆ Neg and Point (i) of Definition 3.5.2 is satisfied. Now, let us suppose
that ¬A is Neg′-evaluated in IDKP([Π]) with Neg ⊆ Neg′. We already know
that B(t/x) is Neg∪{¬A}-evaluated in IDKP([Π]) for some term t, and hence,
by Proposition 3.5.3, it is also Neg′ ∪ {¬A}-evaluated in IDKP([Π]). Since ¬A
is Neg′-evaluated, by Proposition 3.5.4 we have that B(t/x) is Neg′-evaluated.
This concludes the proof.

2

3.5.6 Corollary Let Π be any set of proofs of NDKP and Neg be any set of negated
formulas. For every proof τ : Γ `̀̀ A ∈ IDKP([Π]) and every substitution θ, if θΓ is
Neg-evaluated in IDKP([Π]), then θA is Neg-evaluated in IDKP([Π]).

Proof: First of all, we must show that there exists a proof of the sequent ∆ `̀̀ θA in
IDKP([Π]) with ∆ ⊆ Neg. Since τ : Γ `̀̀ A ∈ IDKP([Π]) and that this set of proofs
is Subst-closed, there exists a proof

τ ′ : θΓ `̀̀ θA

in IDKP([Π]). Let θΓ = {H1, . . . ,Hn}. Since θΓ is Neg-evaluate din IDKP([Π]),
there exist proofs

τ1 : ∆1 `̀̀ H1, . . . , τn : ∆n `̀̀ Hn

64 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

in IDKP([Π]) with ∆1∪. . .∆n ⊂ Neg. Since IDKP([Π]) contains the proofs τ ′, τ1, . . . , τn

and IDKP([Π]) is Cut-closed, it also contains the proof

τ ′′ `̀̀ ∆1 ∪ . . .∆n `̀̀ θA .

To prove Point (ii) of the Definition of Neg-evaluation, we proceed by induction
on the number applications of the rules Cut, R-In⇒∨ and R-In⇒∃ in τ .
Basis: If none of these rules is applied in τ , then, by definition of IDKP([Π]), τ : Γ `̀̀
A is obtained by applying a (possibly empty) sequence of Subst to a sequent in [Π].
Thus, there exists a proof τ ′ : Γ′ `̀̀ A′ ∈ IDKP([Π]) such that θ′Γ′ `̀̀ θ′A ≡ Γ `̀̀ A for
some substitution θ′. Then, also the sequent θΓ `̀̀ θA ≡ θθ′Γ′ `̀̀ θθ′A′ has a proof
in Subst∗([Π]). Since θΓ is Neg-evaluated in IDKP([Π]), by Lemma 3.5.5 we have
that θA is Neg-evaluated in IDKP([Π]).
Step: Let us suppose that for any proof τ ′′ : Γ′′ `̀̀ A′′ ∈ IDKP([Π]) such that the
Cut,R-In⇒∨,R-In⇒∃-depth is less than or equal to h (h ≥ 0), for any substitution
θ′′ and for any set of formulas Neg′′, if θ′′Γ′′ is Neg′′-evaluated in IDKP([Π]) then θ′′A
is Neg′′-evaluated in IDKP([Π]). Now, we suppose that the (Cut,R-In⇒∨,R-In⇒∃)-
depth of the proof τ is h+1. The proofs goes, as usual, by cases, taking into account
the last between the rules Cut,R-In⇒∨,R-In⇒∃ occurring in τ .

• Cut-rule: then the proof τ : Γ `̀̀ A has the following form:

τ1 : Γ′1 `̀̀ H τ2 : Γ′2,H `̀̀ A′

Cut

Γ′ `̀̀ A′

Subst

...
Subst

θ′Γ′ `̀̀ θ′A′

where: Γ′ = Γ′1 ∪ Γ′2, the (Cut,R-In⇒∨,R-In⇒∃)-depth of τ1, τ2 is less than
or equal to h, and τ ends with a (possibly empty) sequence of applications of
Subst. We prove that, if θΓ ≡ θθ′Γ′ is Neg-evaluated in IDKP([Π]), then
θA ≡ θθ′A′ is Neg-evaluated in IDKP([Π]). Since θθ′Γ′1 ⊆ θθ′Γ′ is Neg-
evaluated in IDKP([Π]), by induction hypothesis on the proof:

τ1 : Γ′1 `̀̀ H
Subst

θθ′Γ′1 `̀̀ θθ′H

θθ′H is Neg-evaluated in IDKP([Π]). Hence, θθ′Γ′2, θθ
′H is Neg-evaluated in

IDKP([Π]), and therefore, by induction hypothesis on the proof

τ2 : Γ′2,H `̀̀ A′

Subst

θθ′Γ′2, θθ
′H `̀̀ θθ′A′

3.5. KREISEL-PUTNAM LOGIC 65

we get that θθ′A is Neg-evaluated in IDKP([Π]).

• R-In⇒∨-rule: We consider the case where the rule is applied to the sequence
of sequents

Γ1 `̀̀ C ′; Γ2 `̀̀ (¬B′ ⇒ C ′) ∨ (¬B′ ⇒ D′)

or to the sequence of sequents

Γ1,¬B′ `̀̀ C ′; Γ2 `̀̀ (¬B′ ⇒ C ′) ∨ (¬B′ ⇒ D′) ,

the other cases being symmetrical. Then, the proof τ : Γ `̀̀ A with A = ¬B ⇒
C has one of the following forms

τ1 : Γ1 `̀̀ C ′ τ2 : Γ2 `̀̀ (¬B′ ⇒ C ′) ∨ (¬B′ ⇒ D′)
R-In⇒∨

Γ′ `̀̀ ¬B′ ⇒ C ′

Subst

...
Subst

θ′Γ′ `̀̀ θ′(¬B′ ⇒ C ′)

(3.4)

τ1 : Γ1,¬B′ `̀̀ C ′ τ2 : Γ2 `̀̀ (¬B′ ⇒ C ′) ∨ (¬B′ ⇒ D′)
R-In⇒∨

Γ′ `̀̀ ¬B′ ⇒ C ′

Subst

...
Subst

θ′Γ′ `̀̀ θ′(¬B′ ⇒ C ′)

(3.5)

where Γ′ = Γ1∪Γ2, B ⇒ C ≡ θ′(B′ ⇒ C ′), the number of occurrences of Cut,
R-In⇒∨ and R-In⇒∃ applications in τ1 and τ2 is less than or equal to h, and
τ ends with a (possibly empty) sequence of applications of Subst. The case
of the proof (3.4) is trivial, since, being θθ′Γ1 Neg-evaluated in IDKP([Π]), by
induction hypothesis on the proof

τ1 : Γ1 `̀̀ C ′

Subst

θθ′Γ1 `̀̀ θθ′C ′

we immediately get that θθ′C ′ is Neg-evaluated in IDKP([Π]). Now, let us
consider the proof (3.5). We have to prove that, if θθ′B′ is Neg′-evaluated in
IDKP([Π]) for some set of negated formulas Neg′ including Neg, then θθ′C ′

is Neg′-evaluated in IDKP([Π]). Since θθ′Γ′ is Neg-evaluated in IDKP([Π]),
θθ′Γ′ it is also Neg′-evaluated in IDKP([Π]), by Proposition 3.5.3. Hence, by
induction hypothesis on the proof

τ1 : Γ1,¬B′ `̀̀ C ′

Subst

θθ′Γ1, θθ
′¬B′ `̀̀ θθ′C ′

we get θθ′C ′ is Neg-evaluated in IDKP([Π]).

66 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

• R-In⇒∃-rule: The proof is similar to the one developed for the previous case.

2

By the previous Lemma, we can prove, as seen for Theorem 3.2.7 and Corollary
3.2.8, the following facts:

3.5.7 Theorem (SCR-NDKP) NDKP is a strongly constructive calculus w.r.t.
(Dpopen) and (Edopen). 2

3.5.8 Corollary (SCR-KP) KP is a strongly constructive formal system w.r.t.
(Dpopen) and (Edopen). 2

3.6 Scott Logic

Now, we consider the formal system St, we call Scott Logic, generated by the Hilbert
style calculus:

HSt = HINT + {(St)}

where (St) is the Scott Principle defined as follows:

(St) ((¬¬A ⇒ A) ⇒ A ∨ ¬A) ⇒ ¬A ∨ ¬¬A .

In the propositional frame, Scott Principle is the extra-intuitionistic axiom schema
of a well known intermediate constructive propositional logic quoted in the paper
[Kreisel and Putnam, 1957] as another example contradicting Lukasiewicz’s conjec-
ture. This principle has been extensively studied by people working in intermediate
propositional logics, see e.g. [Anderson, 1972] (where it is quoted in an equivalent
version named F9), or [Minari, 1986, Miglioli, 1992, ?]. In [?] (where a Kripke-
frame semantics formerly introduced in [Miglioli, 1992] is shown to be valid and
complete for such propositional logic) a logic extending it and maximal in the fam-
ily of intermediate constructive propositional logics is exhibited (where a maximal
propositional intermediate constructive logic is a propositional intermediate logics
with the disjunction property which does not admit any constructive extension). In
the framework of intermediate propositional logics, Scott Logic is maximal in the
fragment in one variable; moreover, as shown in [?], the fragment in one variable
of any propositional constructive logic is either contained in the fragment in one
variable of propositional St, or it is contained in the fragment in one variable of the
propositional intermediate logic ASt, the latter being the set of theorems gener-
ated by the propositional Hilbert-style calculus obtained by adding to propositional
Hilbert-style calculus HINT the following propositional axiom schema:

(ASt) (((¬¬A ⇒ A) ⇒ A ∨ ¬A) ⇒ ¬A ∨ ¬¬A) ⇒ ¬¬A ∨ (¬¬A ⇒ A) .

The name ASt means “anti” Scott: this refers to the fact that the logics St and
ASt are constructively incompatible, that is, the union of these two formal systems

3.6. SCOTT LOGIC 67

gives rise to an intermediate propositional logic which does not admit a constructive
extension (in [?] also a maximal intermediate constructive logic is exhibited which
includes ASt).

In the following we will consider Scott Principle in the predicate frame, that is,
St will indicate a first order formal system. Note that in this context (as far as
we know) no Kripke-frame semantics has been given for the intermediate predicate
logic defined by St; thus (as it happens for the intermediate predicate logic KP, for
which, in turn, no Kripke-frame semantics has been provided), we lack the typical
constructivity proof of the formal system based on the Kripke models (we also remark
that the techniques based on the Kripke models provide proofs of constructivity, not
of strong constructivity).

Now, coming to our treatment, Scott Principle can be expressed by the following
rule in a pseudo-natural calculus style:

π1 : Γ,¬¬A ⇒ A `̀̀ A ∨ ¬A

¬A ∨ ¬¬A
St ;

the calculus NDSt is the calculus obtained by adding the rule St to the natural
deduction calculus NDINT. This calculus is easily seen to be a presentation for the
formal system St.

The generalized rule we need to study the strong constructiveness of NDSt is
the generalized rule containing Cut, Subst and the following restricted version of
¬-introduction.

• R-In¬ is the generalized rule whose domain consists, for all the sets Γ,∆ of
formulas, and for all the formulas A such that ¬¬A ⇒ A 6∈ Γ, of all the
sequences of sequents with one of following forms:

σ∗ ≡ Γ,¬¬A ⇒ A `̀̀ A;∆ `̀̀ ¬A ∨ ¬¬A

σ∗ ≡ Γ,¬¬A ⇒ A `̀̀ ¬A

and such that:

Γ,∆ `̀̀ ¬¬A ∈ R-In¬(Γ `̀̀ A;∆ `̀̀ ¬A ∨ ¬¬A)
Γ `̀̀ ¬A ∈ R-In¬(Γ,¬¬A ⇒ A `̀̀ ¬A)

It is immediate to verify that R-In¬ is a non-increasing rule. Using this generalized
rule we define

RSt = Cut ∪ Subst ∪R-In¬

which is non-increasing, since it is the union of non-increasing rules.

3.6.1 Proposition NDSt is uniformly RSt-closed.

68 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

Proof: Since NDINT is uniformly Cut-closed and Subst-closed, and NDSt is an
extension of NDINT, it is sufficient to prove that NDSt is uniformly R-In¬-closed.
We only treat the case where a proof

π1 : Γ,¬¬A ⇒ A `̀̀ ¬A

belongs to NDSt. Then, we have to prove that there is a proof of π : Γ `̀̀ ¬¬A in
NDSt. The following proof uses the fact that there exists a proof π3 : `̀̀ ¬¬(¬¬A ⇒
A) in NDINT such that dg(π3) = dg(¬¬(¬¬A ⇒ A)):

π1 : Γ,¬¬A ⇒ A `̀̀ ¬A A `̀̀ A
E⇒

Γ,¬¬A ⇒ A,A `̀̀ ⊥
I⇒

Γ, A `̀̀ ¬(¬¬A ⇒ A) π3 : `̀̀ ¬¬(¬¬A ⇒ A)
E⇒

Γ, A `̀̀ ⊥
I⇒

Γ `̀̀ ¬A

The degree of the above proof is the maximum between the degree of π1 and the
degree of ¬¬(¬¬A ⇒ A), which is dg(¬¬A) + 3. 2

We remark that the presence of the sequent ∆ `̀̀ ¬A ∨ ¬¬A is needed only to
make R-In¬ a non-increasing rule, and plays no other role in the results we are going
to prove (similar aspects can be found in the previous treatments of Grz and KP).

To get the proof of the strong constructiveness of NDSt we need another notion
of evaluation of a formula in a set of proofs.

3.6.2 Definition (Λ-evaluation) Let Π be a set of proofs, Λ be a set of formulas
of the kind ¬¬K ⇒ K and let A be a formula. We say that A is Λ-evaluated in Π
iff the following condition hold:

(i) There is a proof π ∈ Π such that π : Γ `̀̀ A and Γ ⊆ Λ;

(ii) According to the form of A, one of the following cases hold:

(a) A is atomic or negated;

(b) A ≡ B ∧ C, and both B and C are Λ-evaluated in Π;

(c) A ≡ B ∨ C, and either B is Λ-evaluated in Π or C is Λ-evaluated in Π;

(d) A ≡ B ⇒ C, and, for every Λ′ ⊇ Λ with Λ′ a set of formulas of the kind
¬¬K ⇒ K, if B is Λ′-evaluated in Π then C is Λ′-evaluated in Π;

(e) A ≡ ∃xB(x), and B(t/x) is Λ-evaluated in Π for some term t;

(f) A ≡ ∀xB(x), and, for any term t, A(t/x) is Λ-evaluated in Π.

The following properties will be needed.

3.6.3 Proposition Let Λ be a set of formulas of the kind ¬¬K ⇒ K, let Π be a
set of proofs and let A be a formula. If A is Λ-evaluated in Π, then A is Λ′-evaluated
in Π for any set Λ′ of formulas of the kind ¬¬K ⇒ K such that Λ ⊆ Λ′. 2

3.6. SCOTT LOGIC 69

3.6.4 Proposition Let Π be a Cut-closed set of proofs, let Λ be a set of formulas of
the form ¬¬K ⇒ K, and let A and H be arbitrary formulas. If A is Λ∪{¬¬H ⇒ H}-
evaluated in Π and ¬¬H ⇒ H is Λ-evaluated in Π, then A is Λ-evaluated in Π.

Proof: First of all we have to prove Point (i) of Definition 3.6.2, i.e. that there
exists a proof

π : Γ `̀̀ A ∈ Π

with Γ ⊆ Λ. Since the formula ¬¬H ⇒ H is Λ-evaluated in Π, there exists a proof

π′ : ∆′ `̀̀ ¬¬H ⇒ H ∈ Π

such that ∆′ ⊆ Λ. Moreover, since A is Λ ∪ {¬¬H ⇒ H}-evaluated in Π, there
exists a proof

π′′ : ∆′′,¬¬H ⇒ H `̀̀ A ∈ Π

with ∆′′ ⊆ Λ (we remark that the case π′′ : ∆′′ `̀̀ A ∈ Π with ¬¬H ⇒ H 6∈ ∆′′ is
trivial). Now, since by hypothesis Π is a Cut-closed set of proofs, we obtain, by the
presence of the proofs π′ and π′′ in Π, that there exists also a proof

π : ∆′,∆′′ `̀̀ A ∈ Π .

Since ∆′ ∪∆′′ ⊆ Λ, this proves Point (i) of Definition 3.6.2.
To prove Point (ii), we proceed by induction on the complexity of the formula

A. If A is atomic or negated then the existence of the proof π in Π immediately
entails that A is Λ-evaluated in Π. If A is B ∧ C, B ∨ C, ∀xB(x) or ∃xB(x) then
the proof easily follows from the induction hypothesis. The only interesting case is
A ≡ B ⇒ C. Let us suppose that Λ′ is a set of formulas of the form ¬¬K ⇒ K
including Λ, and that B is Λ′-evaluated in Π. By Proposition 3.6.3 we obtain that
B is also Λ′ ∪ {¬¬H ⇒ H}-evaluated in Π. But, since both B ⇒ C and B are
Λ∪{¬¬H ⇒ H}-evaluated in Π, we have that also C is Λ∪{¬¬H ⇒ H}-evaluated
in Π. Thus, by applying the induction hypothesis to C, we obtain that C is Λ-
evaluated in Π. 2

Now, let us consider the calculus:

IDSt(Π) = ID(RSt,Seq(Π)) .

3.6.5 Lemma Let Π be any set of proofs of NDSt. For any π : Γ `̀̀ H ∈
Subst∗([Π]), and for every set Λ of formulas of the kind ¬¬K ⇒ K, if Γ is Λ-
evaluated in IDSt([Π]), then H is Λ-evaluated in IDSt([Π]).

Proof: Let us consider an arbitrary set Λ of formulas of the kind ¬¬K ⇒ K
and let us suppose Γ to be Λ-evaluated in IDSt([Π]). First of all we have to prove
Point (i) of Definition 3.6.2, i.e. that there exists a proof τ : ∆ `̀̀ H with ∆ ⊆ Λ
in IDSt([Π]). To this purpose, since π ∈ Subst∗([Π]), we note that there exist
a proof π′ : Γ′ `̀̀ H ′ ∈ [Π] and a substitution of individual variables θ such that

70 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

θΓ′ `̀̀ θH ′ ≡ Γ `̀̀ H. Thus, by definition, IDSt([Π]) contains a proof of the sequent
Γ′ `̀̀ H ′, and since it is Subst-closed, there exists also a proof

τ ′ : Γ `̀̀ H ∈ IDSt([Π]) . (3.6)

Now, since Γ = {H1, . . . ,Hn} is Λ-evaluated in IDSt([Π]), there exist proofs

τ1 : ∆1 `̀̀ H1 , . . . , τn : ∆n `̀̀ Hn ∈ IDSt([Π]) (3.7)

with ∆1 ⊆ Λ, . . . ,∆n ⊆ Λ. By the presence in IDSt([Π]) of the proofs of Points (3.6)
and (3.7), and by the fact that IDSt([Π]) is Cut-closed, the proof

τ∗ : ∆0 ∪ . . . ∪∆n `̀̀ H

belongs to IDSt([Π]). Since ∆0 ∪ . . . ∪∆n ⊆ Λ, this proves Point (i).
Now, we prove by induction on depth(π) that H satisfies Point (ii) of Definition

3.6.2.
Basis: If depth(π) = 0, then the only rule occurring in π is an assumption introduc-
tion, that is H ∈ Γ. Thus, H is trivially Λ-evaluated in IDSt([Π]).
Step: We assume that our assertion holds for any set Λ′ of formulas of the form
¬¬K ⇒ K, and for any proof π′ : Γ′ `̀̀ A′ ∈ Subst∗([Π]) such that depth(π′) ≤ h
(h ≥ 0); let us suppose that depth(π) = h + 1. The proof proceeds by cases on the
last rule applied in π. Here the interesting case is when the last rule applied in π is
St; the other cases can be treated as in the analogous Lemma for the Kreisel-Putnam
Logic.

• Rule (St).

π : Γ `̀̀ A ≡
π1 : Γ,¬¬B ⇒ B `̀̀ B ∨ ¬B

Γ `̀̀ (¬B ∨ ¬¬B)
St

Since Γ is Λ-evaluated in IDSt([Π]), by Proposition 3.6.3 we have that Γ is also
Λ∪{¬¬B ⇒ B}-evaluated in IDSt([Π]). Therefore, by induction hypothesis on
the proof π1, we obtain that B∨¬B is Λ∪{¬¬B ⇒ B}-evaluated in IDSt([Π]).
Here we have two possible cases:

Case 1 : If B is Λ ∪ {¬¬B ⇒ B}-evaluated in IDSt([Π]), then there exists in
IDSt([Π]) a proof

τ ′ : ∆′ `̀̀ B

with ∆′ ⊆ Λ ∪ {¬¬B ⇒ B}. Moreover, by Point (i), there exists in IDSt([Π])
a proof

τ : ∆ `̀̀ ¬B ∨ ¬¬B

with ∆ ⊆ Λ. Since IDSt([Π]) is R-In¬-closed, by the presence of the proofs τ
and τ ′ we have that there exists a proof

τ ′′ : ∆,∆′′ `̀̀ ¬¬B ∈ IDSt([Π])

3.6. SCOTT LOGIC 71

where ∆′′ = ∆′ \ {¬¬B ⇒ B}. Since ∆ ∪ ∆′′ ⊆ Λ and ¬¬B is a negated
formula, we immediately have that ¬¬B is Λ-evaluated in IDSt([Π]).

Case 2 : Similar to the previous one.

2

3.6.6 Corollary Let Π be any set of proofs of NDSt. For every proof τ : Γ `̀̀ A ∈
IDSt([Π]) and every substitution θ on the individual variables, if θΓ is ∅-evaluated
in IDSt([Π]) (where ∅ is the empty set), then θA is ∅-evaluated in IDSt([Π]).

Proof: First of all, we must show that there exists a proof of the sequent `̀̀ θA in
IDSt([Π]). This proof can be obtained using only the closure under Cut and Subst
of IDSt([Π]) in a way quite similar to the one seen for the corresponding point in
Corollary 3.2.5. Hence, there exists a proof τ ′ : `̀̀ θA in IDSt([Π]).

To prove Point (ii) of the definition of Λ-evaluation of the formula A in IDSt([Π])
we proceed by induction on the (Cut,R-In¬)-depth of the proof τ : Γ `̀̀ A.
Basis: If no application of the rules Cut and R-In¬ occur in τ , then, by definition
of IDSt([Π]), τ : Γ `̀̀ A is obtained by applying a (possibly empty) sequence of
Subst to a sequent in [Π]. Thus, there exists a proof τ ′ : Γ′ `̀̀ A′ ∈ [Π] such that
θ′Γ′ `̀̀ θ′A ≡ Γ `̀̀ A for some substitution θ′. Then also θΓ `̀̀ θA ≡ θθ′Γ′ `̀̀ θθ′A′ has
a proof in Subst∗([Π]). Since θΓ is ∅-evaluated in IDSt([Π]), by Lemma 3.6.5 we
have that θA is ∅-evaluated in IDSt([Π]).
Step: Let us suppose that, for any proof τ ′′ : Γ′′ `̀̀ A′′ and for any substitution
θ′′ such that the (Cut,R-In¬)-depth is less than or equal to h (h ≥ 0), if θ′′Γ′′ is
∅-evaluated in IDSt([Π]) then θ′′A is ∅-evaluated in IDSt([Π]). Now, supposing that
the (Cut,R-In¬)-depth of the proof τ is h+1, the proof goes on, as usual, by cases
according to the last between the rules Cut,R-In¬ which occurs in τ . The proof of
the case where this rule is Cut coincides with the one given in Corollary 3.5.6.

• R-In¬-rule: then the proof may have two different forms, but in all the cases
the final sequent of the proof is either θ′Γ′ `̀̀ ¬¬θ′A′ or θ′Γ′ `̀̀ ¬θ′A′. Now, if θΓ
is ∅-evaluated in IDSt([Π]), we deduce by the Point (i) of Definition 3.6.2, that
there exists a proof of τ ′ : `̀̀ θθ′¬¬A′ in IDSt([Π]) or τ ′ : `̀̀ θθ′¬A′ in IDSt([Π]).
In both cases the formula on the right side of the sequent is negated, and hence
it is immediately ∅-evaluated in IDSt([Π]).

2

By the previous Lemma, we can prove the analogous of Theorem 3.2.7 and Corollary
3.2.8, i.e. the following facts:

3.6.7 Theorem (SCR-NDSt) NDSt is a strongly constructive calculus w.r.t. (Dpopen)
and (Edopen). 2

3.6.8 Corollary (SCR-St) St is a strongly constructive formal system w.r.t. (Dpopen)
and (Edopen). 2

72 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

3.7 Harrop Theories

In this section we will consider formal systems obtained by adding to the intuition-
istic one a set of Harrop formulas as axioms.

A formula A is an Harrop formula iff A is inductively defined as follows:

1. A is ⊥ or A is atomic;

2. A ≡ B ∧ C, and both B and C are Harrop formulas;

3. A ≡ B ⇒ C, and C is an Harrop formula;

4. A ≡ ∀xB(x), and B(x) is an Harrop formula.

We say that a set of Harrop formulas Hr is an Harrop theory iff Hr is closed under
substitution on individual variables. We could get the same result by requiring the
more usual condition that any formula in Hr is closed. Given an Harrop theory Hr,
we denote with

HHr = HINT + Hr

the Hilbert-style calculus obtained by adding all the formulas of Hr to the axioms
of HINT. Let SHr be the formal system generated by HHr.

Now, let us consider the following generalized rules.

• E∧ is the generalized rule of ∧-elimination. That is the generalized rule whose
domain consists of all the sequents of the kind `̀̀ A ∧B and such that:

`̀̀ A ∈ E∧(`̀̀ A ∧B)
`̀̀ B ∈ E∧(`̀̀ A ∧B)

• E∀ is the generalized rule of ∀-elimination. That is the generalized rule whose
domain consists of all the sequents of the kind `̀̀ ∀xA(x) and such that:

`̀̀ A(x) ∈ E∀(`̀̀ ∀xA(x)) .

• Mp is the generalized rule of modus ponens. That is the generalized rule whose
domain consists of all the sequences of sequents of the kind `̀̀ A ⇒ B; `̀̀ A and:

`̀̀ B ∈ Mp(`̀̀ A ⇒ B; `̀̀ A) .

E∧ and E∀ and Mp are non-increasing rules and so is the compound generalized
rule

RHr = Cut ∪ Subst ∪Mp ∪E∧ ∪E∀ .

Obviously, NDINT is uniformly closed with respect to these rules. Now, given an
Harrop theory Hr, we denote with NDHr the pseudo-natural deduction system
obtained by adding to NDINT an axiom-rule

`̀̀ A
Ax

3.7. HARROP THEORIES 73

for any A ∈ Hr.
It is immediate to verify that NDHr is a presentation for the formal system

generated by HHr. Moreover, as a trivial consequence of Proposition 3.2.3, we have:

3.7.1 Proposition NDHr is uniformly RHr-closed. 2

Now, we define the calculus

IDHr(Π) = ID(RHr,Seq(Π))

We prove that NDHr is a strongly constructive system using the plain notion of
formula evaluated in a set of proofs given in Definition 3.2.1.

3.7.2 Lemma Let Π be any set of proofs of NDHr. For every proof π : Γ `̀̀ A ∈
Subst∗([Π]), if Γ is evaluated in IDHr([Π]), then A is evaluated in IDHr([Π]).

Proof: Since RHr contains Cut and Subst, it immediately follows from Lemma
3.2.2 that there exists a proof

τ : `̀̀ A ∈ IDHr([Π]) . (3.8)

This proves Point (i) of Definition 3.2.1. To prove Point (ii) of Definition 3.2.1 we
proceed by induction on depth(π).
Basis: If depth(π) = 0, we have two cases:
Case 1 : The only rule applied in π is an assumption introduction. In this case A ∈ Γ
and hence A is trivially evaluated in IDHr([Π]).
Case 2 : The only rule applied in π is an axiom-rule. In this case A is an Harrop
formula and Γ is empty. We proceed by a secondary induction on the degree of the
Harrop formula A to prove that τ : `̀̀ A ∈ IDHr([Π]) implies that A meets Condition
(ii) of the definition of formula evaluated in IDHr([Π]). The basis case, that is A
atomic or A ≡ ⊥ (or A negated), is immediate. Now, let us suppose that, for any
τ ′ `̀̀ A′ ∈ IDHr([Π]) with A′ an Harrop formula with degree less than or equal to k,
A′ is evaluated in IDHr([Π]), and let k + 1 be the degree of A. The proof goes by
cases depending on the principal logical constant of A.

• If A ≡ B ∧ C, with B and C Harrop formulas, then, since IDHr([Π]) is E∧-
closed, we get that B and C are provable in IDHr([Π]). Thus, by the secondary
induction hypothesis, we obtain that both B and C are evaluated in IDHr([Π])
and so A ≡ B ∧ C is evaluated in IDHr([Π]).

• If A ≡ B ⇒ C with C an Harrop formula, let us suppose that B is evaluated
in IDHr([Π]). Then there exists a proof

τ ′ : `̀̀ B ∈ IDHr([Π]) .

74 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

Since IDHr([Π]) is Mp-closed, by the existence of the proofs τ and τ ′ in
IDHr([Π]), there exists a proof

τ ′′ : `̀̀ C ∈ IDHr([Π]) .

Thus, since C is an Harrop formula, by the secondary induction hypothesis we
obtain that C is evaluated in IDHr([Π]).

• If A ≡ ∀xB(x) with B(x) an Harrop formula, from the fact that the proof
τ of Point (3.8) belongs to IDHr([Π]), and from the fact that IDHr([Π]) is
E∀-closed, we immediately obtain that there is a proof

τ ′ : `̀̀ B(x) ∈ IDHr([Π]) .

Moreover, since IDHr([Π]) is also Subst-closed, for any term t of the language,
there exists in IDHr([Π]) a proof

π′t : `̀̀ B(t/x) .

Therefore, applying the secondary induction hypothesis, we get that B(t/x) is
evaluated in IDHr([Π]) for any term t; hence ∀xB(x) is evaluated in IDHr([Π]).

Step: Since NDHr has exactly the same non-zero-ary rules as NDINT, the proof
of the Step of the induction coincides with the one given in Lemma 3.2.4 for the
calculus NDINT. 2

3.7.3 Corollary Let Π be a set of proofs of NDHr. For every τ : Γ `̀̀ A ∈ IDHr([Π])
and every substitution θ, if θΓ is evaluated in IDHr([Π]), then θA is evaluated in
IDHr([Π]).

Proof: The proof of Point (i) of Definition 3.2.1 follows from the Cut-closure of
IDHr([Π]). The proof of Point (ii) goes by induction on the (Cut,RHr)-depth of
the proof τ .
Base: If no Cut-rule and no RHr-rule is applied in τ , then τ : Γ `̀̀ A is obtained
by applying a (possibly empty) sequence of Subst-rules to a sequent Γ′ `̀̀ A′ such
that π′ : Γ′ `̀̀ A′ ∈ [Π]. This implies that there exists π : θΓ `̀̀ θA ∈ Subst∗([Π]).
By applying Lemma 3.7.2, we have that θA is evaluated in IDHr([Π]).
Step: Let us suppose that the assertion holds for any proof τ ′′ : Γ′′ `̀̀ A′′ ∈ IDHr([Π])
with (Cut,RHr)-depth less than or equal to h (h ≥ 0), and let us suppose that the
(Cut,RHr)-depth of τ is h + 1. We proceed by cases according to the last between
the rules Cut and RHr applied in τ . The proof of the case corresponding to the
Cut rule coincides with the one given in Corollary 3.2.5. To prove the other case
we proceed by cases on the form of the proof τ .

3.7. HARROP THEORIES 75

• τ has the form

τ1 : `̀̀ A′ ∧B′

E
∧

`̀̀ A′

Subst

...
Subst

`̀̀ θ′A′

with θ′A ≡ A. Since the (Cut,RHr)-depth of τ1 is h, by induction hypothesis
on the proof

τ1 : `̀̀ A′ ∧B′

Subst

`̀̀ θθ′(A′ ∧B′)

we have that θθ′(A′ ∧ B′) is evaluated in IDHr([Π]), and this immediately
implies θθ′A′ ≡ θA is evaluated in IDHr([Π]). The case where we apply the
symmetric rule is analogous.

• τ has the form

τ1 : `̀̀ B′ ⇒ A′ τ2 : `̀̀ B′

Mp

Γ′ `̀̀ A′

Subst

...
Subst

`̀̀ θ′A′

with θ′A′ ≡ A. Since the (Cut,RHr)-depth of τ1 and τ2 is less than or equal
to h, by induction hypothesis on the proofs

τ1 : `̀̀ B′ ⇒ A′

Subst

`̀̀ θθ′B′ ⇒ θθ′A′

τ2 : `̀̀ B′

Subst

`̀̀ θθ′B′

we get that θθ′B ⇒ θθ′A and θθ′B are both evaluated in IDHr([Π]), and this
immediately implies that θθ′A′ ≡ θA is evaluated in IDHr([Π]).

• τ has the form

τ1 : `̀̀ ∀xB(x)
E
∀

`̀̀ B(x)
Subst

...
Subst

`̀̀ θ′B(x)

76 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

with θ′B(x) ≡ A. Since the (Cut,RHr)-depth of τ1 is h, by induction hypoth-
esis on the proof

τ1 : `̀̀ ∀xB(x)
Subst

`̀̀ θθ′∀xB(x)

we get that θθ′∀xB(x) is evaluated in IDHr([Π]), and this immediately implies
that θθ′B(x) ≡ θA is evaluated in IDHr([Π]).

2

3.7.4 Corollary Let Π be any set of proofs of NDHr. Then IDHr([Π]) satisfies
(Dpopen) and (Edopen). 2

Finally, we obtain, in the usual way, the following strong constructiveness results
for NDHr and SHr.

3.7.5 Theorem (SCR-NDHr) For any Harrop theory Hr, if NDHr is the corre-
sponding natural deduction calculus, NDHr is a strongly constructive calculus w.r.t.
(Dpopen) and (Edopen). 2

3.7.6 Corollary (SCR-Hr) For any Harrop theory Hr, the formal system SHr is
a strongly constructive formal system w.r.t. (Dpopen) and (Edopen). 2

This concludes our explanation of formal systems which turn out to be strongly
constructive with respect to (Dpopen) and (Edopen). As the reader can see, they
involve pure predicate logics (intermediate predicate logics), or extensions of pure
logics with the addition of special (weak) axioms. The choice of the examples has
been motivated by the attempt of providing a reasonable number of variants of our
method, yet giving rise to reasonably simple illustrations. On the other hand, the
method seems to be very powerful also when the traditional tools (even to prove
simple, non strong, constructiveness) fail. For instance, our method allows to prove
strong (simple) constructiveness when syntactical techniques such as normalization
cannot be used, and the semantical methods based on the Kripke models cannot be
applied, by the simple fact that no Kripke semantics is known (or can be found) for
the systems in hand (as already noticed, no Kripke semantics has ever been pro-
vided, as far as we know, for Kreisel-Putnam Logic and Scott Logic in a predicative
context). To quote rather complex examples which can be handled using our tech-
niques, the formal system (intermediate predicate logic) obtained by simultaneously
adding the Kuroda Principle, the Grzegorczyck Principle and the Kreisel-Putnam
Principles toHINT can be shown to be strongly constructive with respect to (Dpopen)
and (Edopen). The same holds if we furtherly enlarge such a system by means of
Harrop axioms. Also, we can considerably extend predicate Scott Logic into predi-
cate logics for which we are not even able to imagine a Kripke-frame semantics, yet

3.7. HARROP THEORIES 77

getting strongly constructive systems with respect to (Dpopen) and (Edopen).

Thus, the use of our method to provide systems which are strongly constructive
with respect to (Dpopen) and (Edopen) seems to be interesting especially for those
systems which are intermediate (propositional or predicate) logics. We conclude
this Chapter by quoting the following open problem:

Is there some formal system generating some intermediate predicate (propo-
sitional) logic which is constructive but not strongly constructive with
respect to (Dpopen) and (Edopen) ?

We notice that a similar problem, related to the notion of strong constructivity
based on (Dp) and (Ed), will be solved in Chapter 5.

78 Chapter 3. EXHIBITING STRONGLY CONSTRUCTIVE LOGICS

Chapter 4

Exhibiting strongly constructive
theories

4.1 Theories with closed evaluation

In this Chapter we will devote our attention to theories involving calculi where the
subproofs of π : Γ `̀̀ ∆ only allow to evaluate closed instances of the sequent proved
by π. Thus we will obtain, for the systems treated in this Chapter, strong construc-
tiveness results with respect to (Dp) and (Ed), but not with respect to (Dpopen) and
(Edopen). As a consequence, the notion of evaluation we will use in this Chapter
will depend on the set of closed terms of the language in hand; this is the reason
why we will refer to it as closed evaluation. Another important point about the
results of this section is that in some cases, namely the cases of the Descending
Chain Principle (Section 4.4) and of Markov Arithmetic (Section 4.5), the strong
constructiveness proofs will not take into account only proof-theoretical properties of
the formal systems in hand, but also some model-theoretic properties; this requires
the introduction of some model-theoretic notions.

Let LA be a (first-order) language with extra-logical alphabet A; a model for LA
(or an A-structure), defined according to classical model theory (for an extensive
treatment see e.g. [Chang and Keisler, 1973]), is a couple

MA = 〈D, i〉

where D is a non-empty set, called the domain of the A-structure, and i is the
interpretation of the symbols of A. That is, i is a map associating, with any constant

79

80 Chapter 4. EXHIBITING STRONGLY CONSTRUCTIVE THEORIES

symbol c of A an element of D, with any function symbol f (n) with arity n a function
from Dn into D, and with any relation r(n) of arity n a subset of Dn.

In a model MA terms and formulas are interpreted in the usual way, and we
write

MA |= A

to mean that the formula A is true (is valid, holds) on MA in the classical sense (if
A is not closed, this notation means that the universal closure of A holds in MA).

Given a theory T over the language LA, we write

MA |= T

to mean, as usual, that all the formulas of T hold inMA. We say that anA-structure
MA is reachable iff any element of D is denoted by a closed term of LA.

To prove the strong constructiveness of the calculi related to theories T over the
language LA, we will consider the following notion of evaluation of a formula in a
set of proofs.

4.1.1 Definition Let Π be a set of proofs and A be a formula of LA. We say that
A is LA-evaluated in Π iff the following conditions hold:

(i) There is a proof π : `̀̀ A ∈ Π;

(ii) For every closed instance θA of A, one of the following cases holds:

(a) θA is atomic or negated;

(b) θA ≡ B ∧ C, and both B and C are LA-evaluated in Π;

(c) θA ≡ B ∨ C, and either B is LA-evaluated in Π or C is LA-evaluated in
Π;

(d) θA ≡ B ⇒ C, and either B is not LA-evaluated in Π or C is LA-evaluated
in Π;

(e) θA ≡ ∃xB(x), and B(t/x) is LA-evaluated in Π for some closed term t;

(f) θA ≡ ∀xB(x), and for any closed term t, B(t/x) is LA-evaluated in Π.

We begin our survey of strongly constructive theories presenting Heyting Arithmetic.

4.2 Intuitionistic arithmetic

Let us consider the language LA of arithmetic which extra-logical alphabet A con-
sisting of the constant symbol 0, the unary function symbol s, the two binary func-
tion symbols + and ∗ and the binary relation symbol =. Let HHA be the Hilbert-
style calculus obtained by adding to the Hilbert-style calculusHINT for intuitionistic
logic (presented in Section 1.2.1) the following axioms and rules:

Equality axioms:

4.2. INTUITIONISTIC ARITHMETIC 81

(i). x=x

(ii). x=y ∧ y=z ⇒ x=z

(iii). x = y ⇒ sx = sy

(iv). x=x′ ∧ y=y′ ⇒ (x+y=x′+y′)
(v). x=x′ ∧ y=y′ ⇒ (x∗y=x′∗y′)

Successor axioms:

(vi). sx = sy ⇒ x = y

(vii). sx = 0⇒ ⊥

Sum axioms:

(viii). x+0=x

(ix). x+sy=s(x+y)

Product axioms:

(x). x∗0=0

(xi). x∗sy=(x∗y)+x

Induction axiom scheme:

(xii). A(0) ∧ ∀x(A(x) ⇒ A(sx)) ⇒ ∀yA(y)

We indicate with HA the formal system of Heyting Arithmetic generated by the
Hilbert-style calculus HHA.

WithNDHA we denote the pseudo-natural deduction system, obtained by adding
to NDINT, presented in Section 1.2.2, the rules for identity, successor, sum, product
and induction listed below.

Identity:

`̀̀ x=x
id1

π1 : Γ `̀̀ a(t) π2 : ∆ `̀̀ t=t′

Γ,∆ `̀̀ a(t′)
id2

where, in id2, a(t) is an atomic formula.

Successor Rules:

Γ `̀̀ 0=s(x)

Γ `̀̀ ⊥
s1

Γ `̀̀ s(t)=s(t′)

Γ `̀̀ t=t′
s2

Sum Rules:

`̀̀ t+0=t
+1

`̀̀ t+s(t′)=s(t+t′)
+2

82 Chapter 4. EXHIBITING STRONGLY CONSTRUCTIVE THEORIES

Product Rule:

`̀̀ t∗0=0
∗1

`̀̀ t∗s(t′)=t∗t′+t
∗2

Induction Rule:

Γ `̀̀ A(0) ∆, A(p) `̀̀ A(s(p))

Γ,∆ `̀̀ A(x)
Ind

where p does not occur free in any formula in ∆. p is the proper
parameter (or the eigenvariable) of the considered application
of the induction rule.

It is trivial to verify that NDHA is a presentation for the formal system HA. We
remark that inNDHA the following non-restricted version of the id2-rule is derivable:

π1 : Γ `̀̀ A(t) π2 : ∆ `̀̀ t=t′

Γ,∆ `̀̀ A(t′)
id∗2

where A(t) is any formula. Two other useful derived rules of NDHA are:

t=t′

t′=t
sym

π1 : Γ `̀̀ A(t) π2 : ∆ `̀̀ t′=t

Γ,∆ `̀̀ A(t′)
id∗∗2 .

The set of canonical terms of HA is the set of closed terms of LA defined as
follows:

1. The constant 0 is a canonical term of HA;

2. If t is a canonical term of HA then st is a canonical term of HA;

3. Nothing else is a canonical term of HA.

To denote the canonical terms of LA we use the compact notation sn0 inductively
defined as follows:

sn0 =
{

0 if n = 0
ssn−10 if n > 0

where we simply denote with s0 the canonical term s10.
It is well known that the following result holds:

4.2.1 Proposition Let t be a closed term of LA. Then there exists one and only
one canonical term sn0 such that `HHA

t=sn0 and `NDHA
t=sn0. 2

4.2. INTUITIONISTIC ARITHMETIC 83

According to the previous proposition, given a closed term t of LA, we call canonical
form of t in HA the only canonical term sn0 such that `HHA

t=sn0 (`NDHA
t=sn0).

Now, we introduce the following generalized rules:

• Id1, Sum, Prod are the generalized rules whose domain contains only the
empty sequence ε and such that:

`̀̀ x=x ∈ Id1(ε);
`̀̀ x+0=x ∈ Sum(ε);

`̀̀ x+sy=s(x+y) ∈ Sum(ε);
`̀̀ x∗0=0 ∈ Prod(ε);

`̀̀ x∗sy=x∗y+x ∈ Prod(ε) .

Since any of these rules introduces a sequent in which only an atomic formula occurs,
these are 1-bounded non-increasing rules.

• Id2 is the generalized rule whose domain contains all the sequences of sequents
σ∗ which have one of the following forms:

σ∗ ≡ Γ `̀̀ A(t);∆ `̀̀ t=t′

σ∗ ≡ Γ `̀̀ A(t);∆ `̀̀ t′=t

and such that:

Γ,∆ `̀̀ A(t′) ∈ Id2(Γ `̀̀ A(t);∆ `̀̀ t=t′)
Γ,∆ `̀̀ A(t′) ∈ Id2(Γ `̀̀ A(t);∆ `̀̀ t′=t)

We set
RHA = Cut ∪ Subst ∪ Id1 ∪ Id2 ∪ Sum ∪Prod .

Since any of the rules used to define RHA is a (1-bounded) non-increasing rule, we
have that RHA is a (1-bounded) non-increasing generalized rule. Moreover, it is
immediate to verify that:

4.2.2 Proposition NDHA is uniformly RHA-closed. 2

Given any set of proofs Π, we define:

IDHA(Π) = ID(RHA,Seq(Π)) .

To prove the strong constructiveness of NDHA we need to evaluate terms in
their normal forms inside the calculus IDHA([Π]) and to prove that if a formula
A(t), with t a closed term, is LA-evaluated in IDHA([Π]), then A(t′) is LA-evaluated
in IDHA([Π]) for any closed term t′ such that the formula t=t′ is LA-evaluated in
IDHA([Π]). Namely, we need the two following propositions:

84 Chapter 4. EXHIBITING STRONGLY CONSTRUCTIVE THEORIES

4.2.3 Proposition Let Π be any set of proofs of NDHA. For any closed term t of
LA, there exists a proof τ : `̀̀ t=sn0 ∈ IDHA([Π]), where sn0 is the canonical form
of t in HA. Moreover, there is no proof τ ′ : `̀̀ t=sm0 ∈ IDHA([Π]) with m 6= n.

Proof: The proof of the first part goes by a straightforward induction on the degree
of t. To prove that the canonical form of t in IDHA([Π]) is unique, let us suppose that
there exists a proof τ ′ : `̀̀ t=sm0 ∈ IDHA([Π]) with m 6= n. Now, by Proposition
2.3.8, Seq(IDHA([Π])) ⊆ Seq(NDHA), and hence `̀̀ t=sn0, `̀̀ t=sm0 ∈ Seq(NDHA).
This give rise to a contradiction, since it implies the inconsistency of NDHA. 2

4.2.4 Proposition Let Π be any set of proofs of NDHA, let A(x) be a formula of
LA and let t and t′ be closed terms of LA. If t=t′ is LA-evaluated in IDHA([Π])
then A(t) is LA-evaluated in IDHA([Π]) iff A(t′) is LA-evaluated in IDHA([Π]).

Proof: Since IDHA([Π]) is Id2-closed, it is immediate to verify that `̀̀ A(t) is
provable in IDHA([Π]) iff `̀̀ A(t′) is provable in IDHA([Π]). The proof of Point (ii)
of Definition 4.1.1 easily follows by induction on the structure of A(x). 2

4.2.5 Lemma Let Π be a set of proofs of NDHA. For any π : Γ `̀̀ A ∈ Subst∗([Π]),
if Γ is LA-evaluated in IDHA([Π]), then A is LA-evaluated in IDHA([Π]).

Proof: Since RHA contains the generalized rules Cut and Subst, the proof of
Point (i) of Definition 4.1.1 immediately follows from Lemma 3.2.2. To prove Point
(ii) we proceed by induction on depth(π).
Basis: If depth(π) = 0 then either the only rule applied in π is an assumption
introduction, or it is one between the rules id1, +1, +2, ∗1 and ∗2. In the former
case we have A ∈ Γ, and the assertion immediately follows. In the latter case A is
an atomic formula and hence, by definition, it is LA-evaluated in IDHA([Π]).
Step: Let us suppose that the assertion holds for any proof π′ : Γ′ `̀̀ A′ belonging
to Subst∗([Π]) such that depth(π′) ≤ h and let depth(π) = h + 1. We proceed by
cases, according to the last rule applied in the proof π. The proof for all the rules
of NDINT essentially coincides with the one developed in Lemma 3.2.4. If the last
rule applied in π is one of id2, s1, s2, the assertion immediately follows from the
fact that A is an atomic formula. Now, the only rule we have to analyze is Ind.

• Induction Rule.

π : Γ `̀̀ A ≡
π1 : Γ1 `̀̀ B(0) π2 : Γ2, B(p) `̀̀ B(s(p))

Γ `̀̀ B(x)
Ind

where Γ = Γ1 ∪ Γ2. We begin to prove that B(sm0) is LA-evaluated in
IDHA([Π]) for any m ≥ 0. We proceed by a secondary induction on m. Since
Γ1 ⊆ Γ is LA-evaluated in IDHA([Π]), we have, by the principal induction hy-
pothesis on π1, that B(0) is LA-evaluated in IDHA([Π]). Now, let us suppose
that B(sh0) is LA-evaluated in IDHA([Π]), with h ≥ 0. Let π2[sh0/p] be the

4.2. INTUITIONISTIC ARITHMETIC 85

proof obtained by replacing any occurrence of the proper parameter p in π2

with sh0. By the stipulations on the proper parameters we made in Section
1.2.2,

π2[sh0/p] : Γ2, B(sh0/p) `̀̀ B(sh+10/p)

and, by the principal induction hypothesis on π2, we obtain that B(sh+10) is
LA-evaluated in IDHA([Π]). Now, let us consider the proof π. To prove that
B(x) is LA-evaluated in IDHA([Π]), we must show that any closed instance
θB(x) of B(x) is LA-evaluated in IDHA([Π]). Let t = θ(x) (where t is a
closed term) and let sn0 be the canonical form of t in HA. Since we have
already proved that B(sn0) is LA-evaluated, we have that also the closed
instance θB(sn0) of B(sn0) is LA-evaluated in IDHA([Π]). But since, by
Proposition 4.2.3, IDHA([Π]) contains a proof of the sequent `̀̀ t=sn0, we
obtain, by Proposition 4.2.4, that θB(t) is LA-evaluated in IDHA([Π]). This
concludes the proof.

2

4.2.6 Corollary Let Π be a set of proofs of NDHA. For every τ : Γ `̀̀ A ∈
IDHA([Π]) and every substitution θ, if θΓ is LA-evaluated in IDHA([Π]), then θA is
LA-evaluated in IDHA([Π]).

Proof: First of all, we must show that there exists a proof of the sequent `̀̀ θA
in IDHA([Π]). Let Γ = {H1, . . . ,Hn}. Since θΓ is LA-evaluated in IDHA([Π]), by
Point (i) of Definition 4.1.1, there exist τ1, . . . , τn in IDHA([Π]) such that, for any
i : 1 ≤ i ≤ n, τi : `̀̀ θHi. Moreover, since IDHA([Π]) is Subst-closed, it contains
a proof τ ′ : θΓ `̀̀ θA, and since IDHA([Π]) is Cut-closed, it also contains a proof
τ ′′ : `̀̀ θA. The proof of Point (ii) goes on by induction on the (Cut, Id2)-depth of
τ .
Base: If no Cut-rule and no Id2-rule is applied in τ , then τ : Γ `̀̀ A is either obtained
by applying a possibly empty sequence of Subst-rules to a sequent in Seq([Π]), or
it is obtained by applying a possibly empty sequence of Subst-rules to the one-step
proof consisting of one of the axiom-rules Id1, Sum, Prod. In the former case there
exists a proof τ ′ : Γ′ `̀̀ A′ ∈ [Π] such that θ′Γ′ `̀̀ θ′A′ ≡ Γ `̀̀ A for some substitution
θ′. Then, Subst∗([Π]) also contains a proof of the sequent θΓ `̀̀ θA ≡ θθ′Γ′ `̀̀ θθ′A′.
Since θΓ is LA-evaluated in IDHA([Π]), by Lemma 4.2.5, we have that θA is evalu-
ated in IDHA([Π]). In the latter case τ : Γ `̀̀ A is:

#
`̀̀ t=t′

Subst

...
Subst

θ′(t=t′)

where # is one of the rules Id1,Sum, Prod and A ≡ θ′(t=t′). Thus, since A is

86 Chapter 4. EXHIBITING STRONGLY CONSTRUCTIVE THEORIES

atomic, we immediately have that it is LA-evaluated in IDHA([Π]).
Step: The step goes by cases according to the last between the rules Cut and Id2

applied in τ . If this rule is Cut the proof coincides with the one given in Lemma
3.2.5. Otherwise, since the conclusion of an Id2-rule is atomic, the fact that it is LA-
evaluated in IDHA([Π]) immediately follows from the provability of A in IDHA([Π]).

2

4.2.7 Corollary Let Π be any set of proofs of NDHA. Then IDHA([Π]) satisfies
(Dp) and (Ed).

Proof: Let A ∨ B be a closed formula belonging to Theo(IDHA([Π])). Then there
exists a proof τ : `̀̀ A ∨ B in IDHA([Π]). Since the empty set of premises is LA-
evaluated in IDHA([Π]), by Corollary 4.2.6 we immediately deduce that A ∨ B is
LA-evaluated in IDHA([Π]). By Definition 4.1.1, it follows that, for any closed
instance θ(A ∨ B) of A ∨ B, either θA or θB is LA-evaluated in IDHA([Π]). But,
since A ∨ B is a closed formula, its only closed instance is A ∨ B itself. Hence,
by Point (i) of Definition 4.1.1, we deduce that either A ∈ Theo(IDHA([Π])) or
B ∈ Theo(IDHA([Π])). Therefore, Theo(IDHA([Π])) satisfies (Dp). In a similar way
we can prove that Theo(IDHA([Π])) enjoys the explicit definability property. 2

We remark that if A ∨ B is an open formula, from its LA-evaluation in IDHA([Π])
we can only deduce that, for any closed-instance θ(A ∨ B) of A ∨ B, either θA or
θB is is LA-evaluated in IDHA([Π]); nothing can be said about A ∨B.

Since RHA is a non-increasing generalized rule, NDHA is uniformly RHA-closed
(Proposition 4.2.2) and, by means of the previous corollary, it is trivial to verify
(along the lines explained in the proof of Theorem 3.2.7), that NDHA meets all the
conditions needed to be a strongly constructive calculus.

4.2.8 Theorem (SCR-NDHA) NDHA is a strongly constructive calculus w.r.t.
(Dp) and (Ed). 2

Finally, since we already know that NDHA is a presentation for HA, to deduce
that HA is a strongly constructive formal system, we only need to show that NDHA

agrees with HA. But, by of Proposition 2.4.11, this amounts to prove that NDHA

is uniformly embedded in HHA, this fact immediately following from Theorem 2.4.3
and an inspection of the proper rules of NDHA.

4.2.9 Corollary (SCR-HA) HA is a strongly constructive formal system w.r.t.
(Dp) and (Ed). 2

4.3 Generalized induction

In this section we consider a first-order schema which is close to the induction
principle and is based on the following notion of cover set:

4.3. GENERALIZED INDUCTION 87

4.3.1 Definition Given an alphabet A with a non-empty set of constant symbols,
we say that a finite set C of terms of LA is a cover set for Term(LA) if no term of
C is a variable and, for every closed term t of LA, there is a term t′ ∈ C such that
t ≡ θt′, for some substitution θ of individual variables.

Now, we need the following abbreviations: given a finite set of formulas ∆ =
{B1, . . . , Bk}, we set: ∧

∆ ≡ B1 ∧ . . . ∧Bk ;

given a formula A whose free variables are exactly x1, . . . , xn, we set

∀(A) ≡ ∀x1 . . .∀xnA .

With a cover set C = {t1, . . . , tn} we associate the following Generalized Induction
Principle:

(Gind) ∀(
∧

∆1 ⇒ A(t1)) ∧ . . . ∧ ∀(
∧

∆n ⇒ A(tn)) ⇒ ∀xA(x)

where, for 1 ≤ i ≤ n, ti is a term but not a variable, and if ti contains ki variables
yi
1, . . . , y

i
ki

, then ∆i is {A(yi
1), . . . , A(yi

ki
)}.

We can express this principle in a pseudo-natural deduction style with the fol-
lowing rule:

Generalized Induction Rule : With a cover set C = {t1, . . . , tn} we associate the
Generalized Induction Rule:

Γ,∆1 `̀̀ A(t1) . . . Γ,∆n `̀̀ A(tn)

Γ `̀̀ A(x)
Gind

where, for 1 ≤ i ≤ n, ti is not a variable and if ti contains ki variables
yi
1, . . . , y

i
ki

, then ∆i is {A(yi
1), . . . , A(yi

ki
)}. If ki = 0, ∆i is the empty set.

yi
1, . . . , y

i
ki

are the eigenvariables of the induction rule and cannot occur free in
Γ, A(x). The formulas in ∆i are the induction hypotheses.

Now, let Hr be an Harrop-theory. We denote with

HHr+(Gind) = HINT + Hr + ID + (Gind)

the Hilbert-style calculus obtained by adding the formulas of Hr, the theory of iden-
tity ID (i.e. the theory consisting of the equality axioms listed in Section 4.2), and
all the instances of the axiom schema Gind to the axioms of HINT. THr+ID+(Gind)

will be the formal system generated by the Hilbert-style calculus HHr+ID+(Gind).
Finally, let us denote with NDHr+ID+Gind the pseudo-natural deduction calculus

obtained by adding to the calculusNDINT the rule Gind, rules id1 and id2 for identity
given in Section 4.2 and, for any formula A ∈ Hr, the zero-premises rule

`̀̀ A
Ax

88 Chapter 4. EXHIBITING STRONGLY CONSTRUCTIVE THEORIES

To prove the strong constructiveness of the formal system THr+ID+(Gind), we use
the generalized rule RHr and the abstract calculus IDHr([Π]) defined in Section 3.7.

4.3.2 Lemma Let Π be a set of proofs of NDHr+ID+Gind. For any π : Γ `̀̀ A ∈
Subst∗([Π]), if Γ is LA-evaluated in IDHr([Π]), then A is LA-evaluated in IDHr([Π]).

Proof: Since RHr contains Cut and Subst, the proof of Point (i) of Definition
4.1.1 immediately follows from Lemma 3.2.2. To prove Point (ii) we proceed by
induction on depth(π).
Basis: If depth(π) = 0, then either the only rule applied in π is an assumption
introduction, or A is an Harrop formula. In both cases the proof essentially coincides
with the one given in Lemma 3.7.2.
Step: Now, let us suppose that the assertion holds for any proof π′ : Γ′ `̀̀ A′ belonging
to Subst∗([Π]) such that depth(π′) ≤ h, and let depth(π) = h + 1. We proceed by
cases according to the last rule applied in the proof π. The proof for the rules of
NDINT is quite similar to the one given in Lemma 3.2.4. Now we analyze the rule
Gind.

• Generalized induction rule:

π1 : Γ,∆1 `̀̀ A(t1) . . . πn : Γ,∆n `̀̀ A(tn)

Γ `̀̀ A(x)
Gind .

We begin by proving that, for any closed term t of LA, A(t/x) is LA-evaluated
in IDHr([Π]). This proof goes on by a secondary induction on the structure
of the term t. The basis is the case where t = c and c is a constant symbol.
This implies that c belongs to the cover set C; then, by construction of the rule
Gind, there exists a subproof πi : Γ `̀̀ A(c/x), for some i ∈ {1, . . . , n}. In this
case the assertion immediately follows from the principal induction hypothesis
applied to the proof πi. Now, let us suppose that the assertion holds for any
term t with complexity less or equal to h, and let h + 1 be the complexity of
t. By definition of cover set, there exists a term ti ∈ C such that, for some
substitution θ′, θ′ti ≡ t. Let us consider the proof πi : Γ,∆i `̀̀ A(ti), and let
us apply the substitution θ′ to this proof. By the convention on the proper
parameters, we have that

θ′πi : θ′Γ, θ′∆i `̀̀ A(t) .

Note that θ′∆i contains formulas of the kind A(t′), with t′ a term with com-
plexity less than or equal to h; thus, we can apply the secondary induction
hypothesis and deduce that θ′∆i is LA-evaluated in IDHr([Π]). Thus, by ap-
plying the principal induction hypothesis to θ′πi, we get that A(t/x) is LA-
evaluated in IDHr([Π]). Now, to prove that A(x) is LA-evaluated in IDHr([Π]),
is sufficient to notice that any closed instance θA(x) of A(x) can be obtained
as a closed instance θ′A(t/x) for some closed term t of LS .

2

4.4. DESCENDING CHAIN PRINCIPLE 89

The proof of the following result coincides with the one given for Corollary 3.7.3.

4.3.3 Corollary Let Π be any set of proofs of NDHr+Gind. For every proof τ : Γ `̀̀
A ∈ IDHr([Π]) and every substitution θ, if θΓ is LA-evaluated in IDHr([Π]), then θA
is LA-evaluated in IDHr([Π]). 2

Now we obtain, in the usual way, the strong constructiveness results for NDHr+Gind

and HA.

4.3.4 Theorem (SCR-NDHr+ID+Gind) NDHr+ID+Gind is a strongly constructive
calculus w.r.t. (Dp) and (Ed). 2

4.3.5 Corollary (SCR-THr+ID+(Gind)) THr+ID+(Gind) is a strongly constructive
formal system w.r.t. (Dp) and (Ed). 2

4.4 Descending chain principle

Now, let us consider an alphabet A containing a binary relation symbol < and an
Hilbert-style calculus HPO over LA formalizing < as an irreflexive and transitive
relation. In this context is meaningful to consider the following principle, known as
the descending chain principle.

(DCP) ∃xA(x) ∧ ∀y(A(y) ⇒ ∃z(A(z) ∧ z < y) ∨B) ⇒ B

Here we consider as an illustrative example the case where (DCP) is added to the
Hilbert-style calculus for Heyting Arithmetic. In this case we do not need to add
further axioms, it is sufficient to consider < as an abbreviation for:

∃z(x+sz=y) .

In this frame let HHA+{(DCP)} denote the Hilbert-style calculus obtained by adding
all the instances of the axiom schema (DCP) to the axioms of HHA, that is

HHA+{(DCP)} = HHA + {(DCP)} .

THA+{(DCP)} will denote the formal system generated by the Hilbert style calculus
HHA+{(DCP)}.

The Descending Chain Principle can be stated as a pseudo-natural deduction
rule in the following way:

Descending Chain Principle :

Γ `̀̀ ∃xA(x) Γ, A(y) `̀̀ ∃z(A(z) ∧ z < y) ∨B

Γ `̀̀ B
DCP

where y is the eigenvariable of the DCP rule and does not occur free in Γ, B.

90 Chapter 4. EXHIBITING STRONGLY CONSTRUCTIVE THEORIES

We denote with NDHA+DCP the pseudo-natural deduction calculus obtained by
adding the rule DCP to NDHA. It is easy to verify that NDHA+DCP is a presentation
for the formal system THA+{(DCP)}.

To prove the strong constructiveness of NDHA+DCP, we use the generalized rule
RHA and the calculus IDHA([Π]) defined in Section 4.2. It is immediate to verify
that:

4.4.1 Proposition NDHA+DCP is uniformly RHA-closed. 2

4.4.2 Lemma Let Π be a set of proofs of NDHA+DCP. For any π : Γ `̀̀ A ∈
Subst∗([Π]), if Γ is LA-evaluated in IDHA([Π]), then A is LA-evaluated in IDHA([Π]).

Proof: Since RHA contains Cut and Subst, the proof of Point (i) of Definition
4.1.1 immediately follows from Lemma 3.2.2. To prove Point (ii), we proceed by
induction on depth(π).
Basis: If depth(π) = 0, then either the only rule applied in π is an assumption
introduction, or it is one of the axiom-rules id1, +1, +2, ∗1 and ∗2. In the former
case we have A ∈ Γ, and the assertion immediately follows. In the latter case A is
an atomic formula and hence there in nothing more to prove.
Step: Now, let us suppose that the assertion holds for any proof π′ : Γ′ `̀̀ A′ belonging
to Subst∗([Π]) such that depth(π′) ≤ h, and let depth(π) = h + 1. We proceed by
cases, according to the last rule applied in the proof π. The proof for the other rules
is analogous to the one explained in Lemma 4.2.5. Now we analyze the rule DCP.

• DCP rule:

π1 : Γ `̀̀ ∃xA(x) π2 : Γ, A(y) `̀̀ ∃x(A(x) ∧ x < y) ∨B

Γ `̀̀ B
DCP

We assume that B is not LA-evaluated in IDHA([Π]) and show that this gives
rise to a contradiction. By induction hypothesis, ∃xA(x) is LA-evaluated in
IDHA([Π]), and hence there exists at least a closed term t0 such that A(t0/x)
is LA-evaluated in IDHA([Π]). By the conventions on the proper parameters,
we have that π2[t0/y] is a proof of the sequent

Γ, A(t0/y) `̀̀ ∃x(A(x) ∧ x < t0) ∨B ;

hence, by induction hypothesis, ∃x(A(x) ∧ x < t0) ∨ B is LA-evaluated in
IDHA([Π]). Since B is not LA-evaluated in IDHA([Π]), this means that there
exists at least a closed term t1 such that both A(t1) and t1 < t0 are LA-
evaluated in IDHA([Π]). Now, we can iterate the previous reasoning con-
structing the proof π2[t1/y] of the sequent

∃x(A(x) ∧ x < t1) ∨B ,

4.4. DESCENDING CHAIN PRINCIPLE 91

and finding a new closed term t2 such that both A(t2) and t2 < t1 are LA-
evaluated in IDHA([Π]), and so on. In this way we can find an infinite sequence
t0, t1, . . . , tn, . . . of closed terms of LA such that

t1 < t0 , t1 < t2 , . . . , tn+1 < tn , . . .

are LA-evaluated in IDHA([Π]). This implies that all these formulas are
provable in IDHA([Π]) and hence, by Proposition 2.3.8, they are provable in
NDHA+DCP. But, since the standard structure of the natural numbers N is
a model of NDHA+DCP, this implies that in N the relation < gives rise to an
infinite descending chain; a contradiction. Hence, B must be LA-evaluated in
IDHA([Π]).

This concludes the proof. 2

The proof of the following corollary coincides with the proof of Corollary 4.2.7.

4.4.3 Corollary Let Π be any set of proofs of NDHA+DCP. Then IDHA([Π]) satis-
fies (Dp) and (Ed). 2

We obtain, in the usual way, the strong constructiveness results for NDHA+DCP and
THA+{(DCP)}.

4.4.4 Theorem (SCR-NDHA+DCP) NDHA+DCP is a strongly constructive calcu-
lus w.r.t. (Dp) and (Ed). 2

4.4.5 Corollary (SCR-THA+{(DCP)}) THA+{(DCP)} is a strongly constructive for-
mal system w.r.t. (Dp) and (Ed). 2

Strong constructiveness can be proved also for more general theories contain-
ing the descending chain principle. As an example let us consider a signature A
containing the binary relation <, and let

HHr+ID+PO+{(Kur)}+{(DCP)} = HINT + Hr + ID + PO + (Kur) + (DCP)

be the Hilbert-style calculus obtained by adding to intuitionistic first order logic the
axioms for identity, for strict partial orders, that is, axioms characterizing < as in
irreflexive and transitive relation:

∀x(¬x < x)
∀x∀y∀z(x < y ∧ y < z ⇒ x < z) ,

the Kuroda principle (see Section 3.3), the descending chain principle and an Harrop
theory over the signature A. Moreover, let us suppose that the formal system

THr+ID+PO+{(Kur)}+{(DCP)}

generated by the Hilbert-style calculus HHr+ID+PO+{(Kur)}+{(DCP)} satisfies the fol-
lowing additional conditions:

92 Chapter 4. EXHIBITING STRONGLY CONSTRUCTIVE THEORIES

H1 : There exists an A-structure M = 〈D, i〉 such that

M |= THr+ID+PO+{(Kur)}+{(DCP)}

that is M satisfies any theorem of the formal system;

H2 : The relation <M (that is, the interpretation in the structure M
of the relation symbol <) is well founded, that is any descending
chain

. . . en <M en−1 <M . . . <M e1 <M e0

is finite.

A pseudo-natural deduction presentation of this formal system can be obtained by
adding to NDINT an axiom rule for any formula in Hr, the rules Kur and DCP, the
rules id1 and id2 and the rules for irreflexivity and transitivity here stated:

Rules for Partial Orders:

Γ `̀̀ t < t

Γ `̀̀ ⊥
<1

Γ `̀̀ x < y ∆ `̀̀ y < z

Γ,∆ `̀̀ x < z
<2

It is easy to verify, using the closure properties of RHr defined in Section 3.7, that
this is a strongly constructive calculus for THr+ID+PO+{(Kur)}+{(DCP)}.

We conclude this section by recalling that the descending chain principle allows
to classically derive, in the frame of the theory of strict partial orders, the transfinite
induction principle

(TIND) ∀x(∀y(y < x ⇒ A(y)) ⇒ A(x)) ⇒ ∀zA(z)

that is
`HCL+PO+{(DCP)} TIND .

In a theory formalizing < as a strict linear order, that is, satisfying the axiom

∀x∀y(¬x=y ⇒ x < y ∨ y < x) ,

the axiom (TIND) is the usual transfinite induction principle (which, in the frame of
Peano Arithmetic is classically implied by the usual induction principle (Ind)). We
remark that, in a constructive frame (e.g. in an intuitionistic frame) (DCP) and
(Ind) in general are independent principles.

4.5 Markov principle

Finally, to conclude our presentation of examples of strongly constructive system
with respect to (Dp) and (Ed), we present the well known Markov Principle. Detailed
discussions about the relevance of this principle in the area of constructivism and

4.5. MARKOV PRINCIPLE 93

for program synthesis can be found in [Troelstra, 1973a, Miglioli and Ornaghi, 1981,
Voronkov, 1987]. Markov principle is:

(Mk) ∀x(A(x) ∨ ¬A(x)) ∧ ¬¬∃xA(x) ⇒ ∃xA(x)

Its formulation as a pseudo-natural deduction rule can be given as follows:

Markov Rule :
Γ,¬¬∃xA(z) `̀̀ ∀x(A(x) ∨ ¬A(x))

Γ,¬¬∃xA(x) `̀̀ ∃xA(x)
Mk

As we will see, the proof of strong constructiveness for theories including the
Markov Principle will rely, as in the case of the Descending Chain Principle, on
some semantical property of the class of the classical models of the theory. Namely,
the proof of strong constructiveness of theories including the Markov Principle will
rely on the existence of at least a reachable model for the theory. Here, we study
in full details the case of Markov Arithmetic enlarged with the Kuroda Principle; a
reachable model for such a theory is the standard structure of Natural Numbers.

Let THA−Mk−Kur be the formal system generated by the Hilbert system

HHA−Mk−Kur = HHA + {(Kur), (Mk)}

where (Kur) is the Kuroda Principle studied in Section 3.3.
Now, let NDHA−Mk−Kur be the pseudo-natural deduction calculus obtained

by adding to the calculus NDHA the rules Mk and Kur. It is easy to verify that
NDHA−Mk−Kur is a presentation for the formal system THA−Mk−Kur.

To prove the strong constructiveness of the formal system THA−Mk−Kur, we use
the generalized rule RHA and the calculus IDHA([Π]) defined in Section 4.2. It is
trivial to verify:

4.5.1 Proposition NDHA−Mk−Kur is uniformly RHA-closed. 2

4.5.2 Lemma Let Π be a set of proofs of NDHA−Mk−Kur. For any proof π : Γ `̀̀
A ∈ Subst∗(SubPr(Π)), if Γ is LA-evaluated in IDHA([Π]), then A is LA-evaluated
in IDHA([Π]).

Proof: Since RHA contains Cut and Subst, the proof of Point (i) of Definition
4.1.1 immediately follows from Lemma 3.2.2. To prove Point (ii) we proceed by
induction on depth(π).
Basis: If depth(π) = 0, then either the only rule applied in π is an assumption
introduction, or it is one of the zero-premises rules id1, +1, +2, ∗1 e ∗2. In the first
case the proof is trivial, in the second case A is an atomic formula.
Step: Now, let us assume that the assertion holds for any proof π′ : Γ′ `̀̀ A′ belonging
to Subst∗(SubPr(Π)) such that depth(π′) ≤ h, and let depth(π) = h+1. We proceed
by cases according to the last rule applied in the proof π. The proof for the rules of
NDHA coincides with the one given in Lemmas 3.2.4 and the case of the rule Kur
coincides with the one given in 3.3.2. Now we analyze the rule Mk.

94 Chapter 4. EXHIBITING STRONGLY CONSTRUCTIVE THEORIES

• Mk rule:

π1 : Γ,¬¬∃xA(x) `̀̀ ∀x(A(x) ∨ ¬A(x))

Γ,¬¬∃xA(x) `̀̀ ∃xA(x)
Mk

We must show that, if Γ,¬¬∃xA(x) is LA-evaluated in IDHA([Π]), then ∃xA(x)
is LA-evaluated in IDHA([Π]), that is, for any closed instance θ∃xA(x) ≡
∃xA′(x), there exists at least a term t such that A(t/x) is LA-evaluated in
IDHA([Π]). By induction hypothesis on the proof π1, we have that

∀x(A(x) ∨ ¬A(x))

is LA-evaluated in IDHA([Π]). Hence, by definition, for any closed instance

θ∀x(A(x) ∨ ¬A(x)) ≡ ∀x(A′(x) ∨ ¬A′(x))

of ∀x(A(x) ∨ ¬A(x)) and for any term t,

(A′(t/x) ∨ ¬A′(t/x))

is LA-evaluated in IDHA([Π]). Now, let us suppose that, for any term t,
¬A′(t/x) is LA-evaluated in IDHA([Π]). This implies that, for any term t,
there exists a proof

τt : ¬A′(t/x) ∈ IDHA([Π]) .

It is easy to verify that this implies that, for any term t,

`HPA
¬A′(t/x) . (4.1)

But, since ¬¬∃xA(x) is also LA-evaluated in IDHA([Π]), we can analogously
deduce that

`HPA
¬¬∃xA′(x)

and hence, by the fact that classical negation is idempotent,

`HPA
∃xA′(x) . (4.2)

Now, since the standard structure of natural numbers N is reachable in the
language of the theory, by Points (4.1) and (4.2) we get:

N |= ¬A(t/x) for any term t of LA (4.3)
N |= ∃xA(x) . (4.4)

But (4.3) and (4.4) are clearly contradictory, hence, it is not possible that,
for any term t, ¬A′(t/x) is LA-evaluated in IDHA([Π]). Indeed, there exists
a term t such that A′(t/x) is LA-evaluated in IDHA([Π]). Since A′(x) is a
generic closed instance of A(x), we have that this holds for any closed instance
of A(x). This proves the assertion.

2

4.5. MARKOV PRINCIPLE 95

4.5.3 Corollary Let Π be any set of proofs of NDHA−Mk−Kur. For every proof
τ : Γ `̀̀ A ∈ IDHA([Π]) and every substitution θ, if θΓ is LA-evaluated in IDHA([Π]),
then θA is LA-evaluated in IDHA([Π]). 2

Now, we obtain, in the usual way, the strong constructiveness results for the calculus
NDHA−Mk−Kur and for the formal system THA−Mk−Kur.

4.5.4 Theorem (SCR-NDHA−Mk−Kur) NDHA−Mk−Kur is a strongly construc-
tive calculus w.r.t. (Dp) and (Ed). 2

4.5.5 Corollary (SCR-THA−Mk−Kur) THA−Mk−Kur is a strongly constructive
formal system w.r.t. (Dp) and (Ed). 2

We can prove strong constructiveness also for other systems including the Markov
Principle, however also these systems must admit at least a reachable model. For ex-
ample, any formal system TMk generated by an Hilbert-style calculus HMk satisfying
the following conditions is strongly constructive:

H1 : HMk = HINT + HA + {(Kur)}+ {(Mk)}
where Hr is an Harrop-theory over the language LA and (Kur)
is the Kuroda principle studied in Section 3.3.

H2 : The formal system HCL +Hr has at least a reachable (classical)
model.

Since the pseudo-natural deduction calculus NDMk obtained by adding the rules Mk
and Kur and the zero-premises rule

`̀̀ A
Ax ,

for any A ∈ Hr, to the natural deduction calculus NDINT, it is easy to prove,
using the generalized rule RHr and the abstract calculus IDHr(Π), that NDMk is
a strongly constructive calculus w.r.t. (Dpopen) and (Edopen) and that TMk is a
strongly constructive formal system w.r.t. (Dpopen) and (Edopen).

4.5.6 Remark In the proof of the above Lemma 4.5.2 (as well as in the proof of Lemma
4.4.2), we have combined proof theoretic and model theoretic arguments to get a typical
proof theoretic result such as a strong constructivity theorem. This is quite in line with our
perspective, oriented to single out formal systems of potential interest for Computer Science
without disregarding any combination of tools which can help in reaching this goal. Of course,
in literature is a lot of examples of formal systems proved to be constructive using semantical
tools (e.g. Kripke models). But in those examples generally only simple constructivity is
involved, not a more sophisticated proof theoretic notion such as our strong constructivity.
On the other hand, a very sophisticated constructive Proof Theory has been developed more
or less in the frame of what we call, in the introduction to the present Thesis, the extended
intuitionistic tradition. Such a Proof Theory conforms to more orthodox paradigms that

96 Chapter 4. EXHIBITING STRONGLY CONSTRUCTIVE THEORIES

our proof theory: one of the main paradigms is to analyze proof theoretic matters (e.g.
Normalization Theorems, Constructivity Proofs, etc.) using, so to say, proof theoretic tools;
hardly a notion such as the one of classical model can be included in such tools.

This completes our presentation of strongly constructive systems with respect
to (Dp) and (Ed). Like we have made for strong constructiveness with respect
to (Dpopen) and (Edopen), the choice of the examples has been mainly inspired to
the attempt of giving clear illustrations. Other, much more complex (and perhaps,
more interesting) examples could have been chosen. For instance, we can extend
Heyting Arithmetic with any set of Harrop axioms together with Descending Chain
Principles and both Kreisel-Putnam Principles, yet getting a strongly constructive
formal system; we can ever take, in this context, principles stronger than the Kreisel-
Putnam ones. Likewise, we can extend Markov Arithmetic (obtained by adding
Markov Principle to HHA) with Harrop axioms, Descending Chain Principles and
axiom-schemes for intermediate predicate logics stronger than Scott Principle, yet
getting strongly constructive systems.

We remark however, that in the frame of strong constructiveness with respect
to (Dp) and (Ed) (where (Dpopen) and (Edopen) cannot be obtained mainly by the
presence of Induction and Descending Chain Principles), constructive incompatibil-
ity plays a role stronger than in the frame of strong constructiveness with respect to
(Dpopen) and (Edopen). For instance, any formal system including intuitionistic logic
and Grzegorczyck Principle allows to prove Markov Principle; thus, since there are
formal systems including intuitionistic logic, Grzegorczyck Principle and the Kreisel-
Putnam Principles which are constructive with respect to (Dpopen) and (Edopen) (see
the discussion at the end of Chapter 3) there are also systems which are strongly
constructive with respect to (Dpopen) and (Edopen) and include intuitionistic logic,
Markov Principle and the Kreisel-Putnam Principles. On the other hand, the si-
multaneous addition of Kreisel-Putnam Principles and Markov Principle to Heyting
Arithmetic cannot give rise to a strongly constructive system with respect to (Dp)
and (Ed) by the simple fact that such a system does not ever satisfy (Dp) and (Ed)
(that is it is not simply constructive): as a matter of fact, it collapse to the classical
Peano Arithmetic (see e.g. [Troelstra, 1977]).

To give another example, the addition of Grzegorczyck Principle alone to Heyt-
ing Arithmetic give rise, in turn, to the classical Peano Arithmetic; but (Grz) is
interesting from the point of view of strong constructiveness, since, as we have seen,
its addition to intuitionistic predicate calculus (with the possible addition of Harrop
axioms, which may be very interesting axiomatizations of mathematical theories)
provides a strongly constructive system.

The above remarks suggest that a good development of the theory of strongly
constructive formal systems should be made in connection with an extensive analy-
sis of constructive incompatibility with respect to (Dp) and (Ed) on the one hand,
and with respect to (Dpopen) and (Edopen) on the other hand: the first kind of in-
compatibility mainly turns out to be simultaneous incompatibility of strong mathe-
matical principles (such as induction) and various strong logical extra-intuitionistic

4.5. MARKOV PRINCIPLE 97

axiom-schemes; the second kind of incompatibility mainly concerns the coexistence
of various logical extra-intuitionistic principles.

Note that the treatment of the present section has taken into account only sys-
tems which are classically consistent, that is, their theories can be satisfied on some
classical model. On the other hand, our notion of strong constructiveness can be
applied as well to consistent, even if classically inconsistent, formal systems; e.g.,
we can prove the strong constructiveness of consistent but not classically consis-
tent formal systems obtained by adding to Heyting Arithmetic suitable instances
of a principle known as Church’s Thesis (see e.g. [Troelstra, 1973a, Troelstra, 1977,
Troelstra and van Dalen, 1988a]). We are analyzing from the point of view of strong
constructiveness the whole system involving Church’s Thesis, that is the system ob-
tained by adding to Heyting Arithmetic all the instances of Church’s Thesis.

98 Chapter 4. EXHIBITING STRONGLY CONSTRUCTIVE THEORIES

Chapter 5

A constructive but not strongly
constructive formal system

5.1 Basic recursion theory

The aim of this section is to make this thesis self contained. The material here
presented can be found in any good text of recursion theory; we essentially follow
[Kleene, 1952, Girard, 1987, Odifreddi, 1989]. Hereafter, we will use symbols as
f (n), g(n), h(n), possibly with indexes, to denote n-ary number-theoretic functions,
that is functions from Nn into N, and symbols as p(n), q(n), possibly with indexes,
to denote n-ary number-theoretic relations, that is subsets of Nn. We will avoid to
write the arity any time it is clear from the context. Finally, we will use the notation
p ↔ q to mean that p holds iff q holds.

5.1.1 Definition A function f : Nk → N (k ≥ 0) is recursive iff it is obtained by
means of the following schemes:

(R1) - For any n, i ∈ N such that 1 ≤ i ≤ n, the projection function

I
(n)
i (x1, . . . , xn) such that I

(n)
i (x1, . . . , xn) = xi, is recursive;

- The binary function + (sum) is recursive;
- The binary function ∗ (product) is recursive;
- The binary function χ< (the characteristic function of the binary

relation <) is recursive.

(R2) If g is an m-ary recursive function, and h1, . . . , hm are n-ary recur-
sive functions, then the function

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn))

99

100 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

is recursive.

(R3) If g is an (n + 1)-ary recursive function and for all a1, . . . , an ∈ N
there exists b ∈ N such that g(a1, . . . , an, b) = 0, then the function

f(x1, . . . , xn) = µy(g(x1, . . . , xn, y) = 0)

is recursive, where µyg(x1, . . . , xn, y) = 0 is the smallest y such that
g(x1, . . . , xn, y) = 0 holds.

The functions of (R1) are called initial functions, the scheme (R2) is called composition
scheme, and (R3) is called minimalization scheme.

It is a well known result that schemes for constant functions and the scheme of
primitive recursion give rise to recursive functions:

5.1.2 Proposition
(R4) Constant functions are recursive;

(R5) Let g be an n-ary recursive function and let h be a (n + 2)-ary
recursive function. Then the (n+1)-ary function f defined by means
of the following scheme is recursive.{

f(x1, . . . , xn, 0) = g(x1, . . . , xn)
f(x1, . . . , xn, k + 1) = h(x1, . . . , xn, k, f(x1, . . . , xn, k))

2

A relevant subclass of the one of recursive functions is the class of the primitive
recursive functions.

5.1.3 Definition A function f : Nk → N (k ≥ 0) is primitive recursive if it is
obtained by means of the schemes (R1), (R2), (R4) and (R5).

An n-ary relation p(x1, . . . , xn) is recursive or primitive recursive if its charac-
teristic function

χp(x1, . . . , xn) =
{

0 if p(x1, . . . , xn) is true
1 otherwise

is recursive or primitive recursive respectively.
The central role played by the notion of recursive function in mathematical logic

and computer science comes from the well known Church’s Thesis, asserting that
every computable function is recursive. However, how it is well known, the class
of recursive functions fails to have nice “algebraic closure properties”. Namely, the
set of the recursive functions cannot be enumerated by a recursive function. This
is a well known consequence of the fact that (R3) asks for an infinitary condition.
Hence, given an arbitrary integer e we cannot effectively decide if it is the “index”
of a sequence of applications of (R1), (R2) and (R3) which give rise to a recursive
function.

5.1. BASIC RECURSION THEORY 101

The lack of this property is the main reason why one needs to introduce the
concept of partial recursive function. A partial recursive function is simply a function
that may be undefined for some (possibly all) arguments; the set of the arguments
for which it is defined is called its domain. In this sense a recursive function is a
total partial recursive function, that is a partial recursive function whose domain
coincides with N. To define partial recursive functions we need an “extended equal-
ity” relation, we denote with '. Namely, if t and u are expressions involving partial
recursive functions, t ' u means that either both t and u are defined, and in that
case t = u, or t and u are both undefined.

5.1.4 Definition A function f : Nk → N (k ≥ 0) is partial recursive iff it is obtained
by means of the following schemes:

(R1’) - For any n, i ∈ N such that 1 ≤ i ≤ n, the projection function

I
(n)
i (x1, . . . , xn) such that I

(n)
i (x1, . . . , xn) ' xi, is partial recur-

sive;
- The binary function + (sum) is partial recursive;
- The binary function ∗ (product) is partial recursive;
- The binary function χ< (the characteristic function of the binary

relation <) is partial recursive.

(R2’) If g is an m-ary partial recursive function, and h1, . . . , hm are n-ary
partial recursive functions, then the function

f(x1, . . . , xn) ' g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn))

is partial recursive.

(R3’) If g is an (n + 1)-ary partial recursive function, then the function

f(x1, . . . , xn) ' µy(g(x1, . . . , xn, y) = 0)

is partial recursive, where: µy(g(x1, . . . , xn, y) = 0) is the small-
est y such that g(x1, . . . , xn, 0), . . . , g(x1, . . . , xn, y) are defined and
g(x1, . . . , xn, y) ' 0 if such an y exists; µy(g(x1, . . . , xn, y) = 0) is
undefined otherwise.

An explicit definition Df (n) (see [Kleene, 1952]) of a partial recursive function is a
formal derivation which specifies the partial recursive function f (n), starting from
the initial functions, by means of the composition scheme and the minimalization
scheme. Namely, Df (n) is a sequence g1, . . . , gk (k ≥ 1) of occurrences of functions
such that gk = f (n) and each function gi of the sequence is either an initial function
or is obtained by applying the composition scheme or the minimalization scheme to
preceding functions of the sequence.

We remark that the main improvement of the definition of partial recursive
functions with respect to Definition 5.1.1 is that in (R3’) one does not ask for an
infinitary condition. The practical consequence is that the partial recursive functions

102 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

can be enumerated by a function of the same class (see the Enumeration Theorem
5.1.8 below).

The corresponding notion for relations is the one of recursively enumerable rela-
tion.

5.1.5 Definition An n-ary relation is recursively enumerable (r.e. for short) if it is
the domain of an n-ary partial recursive function.

A result which will be heavily used in Section 5.3 is the Normal Form Theorem
proved by Kleene in 1938.

5.1.6 Theorem (Normal form theorem) There exist an 1-ary primitive recur-
sive function U(x) and, for any integer n ≥ 0, an (n + 2)-ary primitive recursive
relation Tn(y, x1, . . . , xn, w), with the following properties:

(i). If f is an n-ary partial recursive function, then there exists an integer e (called
an index of f), such that, for all a1, . . . , an:

f(a1, . . . , an) ' U(µwTn(e, a1, . . . , an, w))

(ii). If p is an n-ary recursively enumerable relation, then there exists an integer e
(an index for p) such that, for all a1, . . . , an:

p(a1, . . . , an) ↔ ∃wTn(e, a1, . . . , an, w) .

2

The Normal Form Theorem asserts that every partial recursive function (every r.e.
relation) has an index. Of course, this result still holds for recursive and primitive
recursive functions. The advantage given by the introduction of the partial recursive
functions is that the converse holds as well, and then the partial recursive functions
can be enumerated by a function of the same class. That is, fixed an integer n,
we have that any integer e defines a n-ary partial recursive function, and an n-ary
relation. To state this result formally, we need the following definition.

5.1.7 Definition For any positive integer n, we will denote with f
(n)
e the n-ary

partial recursive function of index e, that is the partial recursive function f
(n)
e such

that, for any a1, . . . , an ∈ N:

f (n)
e (a1, . . . , an) ' U(µwTn(e, a1, . . . , an, w)) .

Now, we can state the symmetric version of the Normal Form Theorem.

5.1.8 Theorem (Enumeration Theorem) For any given integer n, the sequence

{f (n)
e }e∈ω is a partial recursive enumeration of the n-ary partial recursive functions.

That is, the following properties hold:

5.1. BASIC RECURSION THEORY 103

(i). For any e ∈ N, f
(n)
e is an n-ary partial recursive function;

(ii). If g is an n-ary partial recursive function, then there exists an index e ∈ N
such that g ' f

(n)
e ;

(iii). There exists an (n + 1)-ary partial recursive function h such that, for any

e ∈ N, h(e, x1, . . . , xn) ' f
(n)
e (x1, . . . , xn).

2

Hereafter, we will denote with

E(n) = {f (n)
e }e∈ω (5.1)

a fixed enumeration of partial recursive functions, whose existence is guaranteed by
the previous theorem.

As it is well known, for primitive recursive functions a weaker version of the
Enumeration Theorem holds. Namely, there exists a recursive function enumerating
all the primitive recursive functions, but this function is not primitive recursive.
(For unary primitive recursive functions it is the well known Ackermann function.)
Hereafter, we will denote with

E(n)
prim = {f (n)

e }e∈ω (5.2)

a fixed enumeration of the n-ary primitive recursive functions.
A weaker version of the Normal Form Theorem is the Projection Theorem (also

called existential quantifier theorem), see e.g. [Rogers, 1967].

5.1.9 Theorem (Projection Theorem) A relation p(x1, . . . , xn) is r.e. iff there
exists a primitive recursive relation q(x1, . . . , xn, y) such that, for any a1, . . . , an:

p(a1, . . . , an) ↔ ∃yq(a1, . . . , an, y) .

2

Another important theorem of recursion theory is the so called Sm
n -theorem or

parameterization theorem.

5.1.10 Theorem (Sm
n -Theorem) Given integers m,n, there exists a primitive re-

cursive, one-to-one function Sm
n (e, x1, . . . , xn) such that:

fSm
n (e,x1,...,xn)(y1, . . . , ym) ' fe(x1, . . . , xn, y1, . . . , ym) .

2

104 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

Finally, we present a variant of the Recursion Theorem, known as Fixed-Point
Theorem.

5.1.11 Theorem (Fixed-Point Theorem) For any positive integer n, given an
1-ary recursive function g(n), there exists an index e such that

f (n)
e ' f

(n)
g(e)

2

5.2 Notions of representability

Now, let LA be the language of (first) order arithmetic, that is the language whose
extra-logical alphabet consists of the constant symbol 0, the unary function symbol
s, the two binary function symbols + and ∗ and the binary relation symbol =.
With HA we denote the the formal system of Heyting arithmetic (or intuitionistic
arithmetic) generated by the Hilbert-style calculusHHA obtained by adding toHINT

axioms (i)-(x) below. On the other hand, with PA we denote the formal system of
Peano arithmetic (or classical arithmetic) generated by the Hilbert-style calculus HPA

obtained by adding to HCL axioms (i)-(xii) below.

Equality axioms:

(i). x=x

(ii). x=y ∧ y=z ⇒ x=z

(iii). x = y ⇒ sx = sy

(iv). x=x′ ∧ y=y′ ⇒ (x+y=x′+y′)
(v). x=x′ ∧ y=y′ ⇒ (x∗y=x′∗y′)

Successor axioms:

(vi). sx = sy ⇒ x = y

(vii). sx = 0⇒ ⊥

Sum axioms:

(viii). x+0=x

(ix). x+sy=s(x+y)

Product axioms:

(x). x∗0=0

(xi). x∗sy=(x∗y)+x

Induction axiom scheme:

5.2. NOTIONS OF REPRESENTABILITY 105

(xii). A(0) ∧ ∀x(A(x) ⇒ A(sx)) ⇒ ∀yA(y)

Henceforth, we will use the following notational conventions. First of all, given
an Hilbert-style calculus we will write H ` A to mean `H A. a, b, . . ., possibly
with indexes, will denote natural numbers, while ã, b̃, . . ., possibly with indexes, will
denote the corresponding numerals. We recall that a numeral of LA is a term which
canonically represents a natural number, according to the following convention: if
a = 0 then ã is the constant symbol 0 of LA, and if a = b + 1 then ã is sb̃.

Now, we state some properties of the calculus HHA we will use in the sequel.

5.2.1 Proposition Let t be a closed term of LA. Then there exists one and only
one numeral ñ such that HHA ` t = ñ. 2

5.2.2 Proposition If HHA ` t = t′ and HHA ` A(t) then HHA ` A(t′). 2

5.2.3 Proposition HHA is a constructive calculus. 2

Now, we introduce the notions of representability we will use in the following
sections.

5.2.4 Definition Let f(x1, . . . , xn) be a number-theoretic function. A formula
Ψf (x1, . . . , xn, z) of LA strongly numeralwise represents f(x1, . . . , xn) in HHA iff:

1. For any a1, . . . , an, b ∈ N, if b = f(a1, . . . , an) then HHA ` Ψf (ã1, . . . , ãn, b̃);

2. HHA ` ∀x1 . . .∀xn∃!zΨf (x1, . . . , xn, z) .

A function f is strongly numeralwise representable in HHA if it is strongly numer-
alwise represented by some formula of LA. The previous definition is stronger
than the usual definition of numeralwise representable function (quoted e.g. in
[Kleene, 1952]), which can be obtained considering Point (1) of Definition 5.2.4 and
the following Point (2’)

2’. For any a1, . . . , an ∈ N, HHA ` ∃!zΨf (ã1, . . . , ãn, z).

An analogous definition can be given for relations (indeed, it is simply obtained by
applying the previous definition to the characteristic function of a relation):

5.2.5 Definition Let p(x1, . . . , xn) be a number-theoretic relation. A formula Ψp(x1, . . . , xn)
of LA strongly numeralwise expresses p(x1, . . . , xn) in HHA iff:

1. For any a1, . . . , an ∈ N:

(a) If p(a1, . . . , an) is true then HHA ` Ψp(ã1, . . . , ãn);

(b) If p(a1, . . . , an) is false then HHA ` ¬Ψp(ã1, . . . , ãn);

106 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

2. HHA ` ∀x1 . . .∀xn(Ψp(x1, . . . , xn) ∨ ¬Ψp(x1, . . . , xn)).

A relation is strongly numeralwise expressible in HHA if it is strongly numeralwise
expressed inHHA by some formula of LA. The usual weaker definition of numeralwise
expressible relation ([Kleene, 1952]) can be obtained by ignoring Point (3) of the
previous definition.

Now, we recall that any primitive recursive function f (n) can be characterized
by an explicit definition DPrim

f (n) (see [Kleene, 1952]). This is a formal derivation (and

an algorithm) which specifies the primitive recursive function f (n), starting from the
initial functions, by means of the composition scheme and the primitive recursion
scheme. Namely, DPrim

f (n) is a sequence g1, . . . , gk (k ≥ 1) of occurrences of functions

such that gk = f (n) and each function gi of the sequence is either an initial function
or is obtained by applying the composition scheme or the primitive recursion scheme
to preceding functions of the sequence.

The important point about explicit definitions of primitive recursive functions,
is that, starting from the explicit definition DPrim

f (n) of f (n), we can build up in an

effective way (by means of the Gödel’s β-functions) a formula Ψf (x1, . . . , xn, y) of
LA which strongly numeralwise represents the function f (n)(x1, . . . , xn) in HHA.
(Such an effective correspondence between explicit definitions of recursive functions
and formulas describing them, is used also in [Kleene, 1952] to show that every
primitive recursive function is numeralwise representable inHPA.) Here effectiveness
means that there is a computable function associating, with any explicit definition
DPrim

f (n) of a primitive recursive function f (n), a formula Ψf (n)(x1, . . . , xn, y) strongly
representing it in HHA.

To formally characterize this computable function as a full number-theoretic
one, let us consider a standard arithmetization GPrim of the formalism for primitive
recursive functions and a standard arithmetization GLA

of the language of first-order
arithmetic LA. This allows us to associate, with any description DPrim

f (n) and with
any formula A, two Gödel numbers, we denote with pDPrim

f (n) q and pAq respectively.
Then, according to the above discussion, we can assert that there exists a recursive
function Dprim

fun −Wff associating, with any natural number (considered as the Gödel
number of an explicit definition DPrim

f (n) of a primitive recursive function f (n)) the
Gödel number of a formula which strongly numeralwise expresses it in HHA.

We summarize this fact in the following theorem:

5.2.6 Theorem There is a recursive function (indeed a primitive recursive func-
tion) Dprim

fun −Wff(x) satisfying the following property:

• For every explicit definition DPrim
f (n) of a primitive recursive function f (n), if

k = pDPrim
f (n) q is the Gödel number of it and h = Dprim

fun −Wff(k), then h is

the Gödel number of a formula Ψf (x1, . . . , xn, y) which strongly numeralwise
expresses in HHA the function f (n).

2

5.2. NOTIONS OF REPRESENTABILITY 107

Now, we associate with every primitive recursive function f (n) the primitive
recursive relation p

(n)
f defined as follows:

p
(n)
f (x1, . . . , xn) ↔ (f (n)(x1, . . . , xn) = 0) . (5.3)

In particular, if f(x1, . . . , xn) is the characteristic function of a relation p(x1, . . . , xn),
then it defines a relation according to the usual conventions, that is, pf (x1, . . . , xn)
is true iff f(x1, . . . , xn) = 0 iff p(x1, . . . , xn) true. On the other hand, the present
convention avoids the introduction of unnecessary distinctions between functions
defining relations and the other ones, allowing us to consider the explicit definition
DPrim

f (n) of the function of f (n) as the explicit definition of a relation p(n).
Moreover, if Ψf (x1, . . . , xn, y) is the formula of LA which strongly numeralwise

represents f (n) in HHA, it is easy to verify that the formula

Ψpf
(x1, . . . , xn) ≡ Ψf (x1, . . . , xn, 0)

strongly numeralwise expresses the primitive recursive relation p
(n)
f in HHA.

By means of the correspondence (5.3), starting from the previously fixed enu-
meration of primitive recursive functions

E(n)
prim = {f (n)

e }e∈ω

defined in (5.2), we can build up the following enumeration of primitive recursive
relations:

E(n)
r−prim = {p(n)

e }e∈ω = {p(n)
fe
}e∈ω . (5.4)

The above characterization of the primitive recursive relations and Theorem 5.2.6
immediately yield:

5.2.7 Theorem There is a recursive function (indeed a primitive recursive func-
tion) Dprim

rel −Wff(x) satisfying the following property:

• For every explicit definition DPrim
p(n) of a primitive recursive relation p(n), if

k = pDPrim
p(n) q is the Gödel number of it and h = Dprim

rel −Wff(k), then h is

the Gödel number of a formula Ψp(x1, . . . , xn) which strongly numeralwise
expresses in HHA the relation p(n).

2

Now, let us consider the relation Tn(y, x1, . . . , xn, w) (for any n > 0) defined in
the Normal Form Theorem 5.1.6. Since Tn(y, x1, . . . , xn, w) is a primitive recursive
relation, it is strongly numeralwise expressible in HHA according to the previous
Theorem. Similarly, the function U(x) defined in the Normal Form Theorem 5.1.6
is primitive recursive, and hence it is strongly numeralwise representable in HHA

according to Theorem 5.2.6. These facts justify the following definition:

108 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

5.2.8 Definition For any positive integer n, let us fix an explicit definition of
Tn(y, x1, . . . , xn, w) and let h be its Gödel number in the fixed arithmetization GPrim.
We denote with

Tn(y, x1, . . . , xn, w)

the formula of LA whose Gödel number is Dprim
rel −Wff(h), which strongly numeralwise

expresses Tn(y, x1, . . . , xn, w) in HHA. Moreover, let us fix an explicit definition of
U(x) and let k be the its Gödel number in the fixed arithmetization GPrim. We
denote with

U(x, y)

the formula of LA whose Gödel number is Dprim
fun −Wff(k), which strongly numeralwise

represent U(x) in HHA.

Finally, we introduce the representability notions relative to partial recursive
functions.

5.2.9 Definition Let f(x1, . . . , xn) be a number-theoretic function. A formula
Ψf (x1, . . . , xn, z) of LA exhaustively numeralwise represents f(x1, . . . , xn) in HHA,
iff:

1. For any a1, . . . , an ∈ dom(f),

HHA ` ∃!zΨf (ã1, . . . , ãn, z) ;

2. For any a1, . . . , an ∈ dom(f), if b = f(a1, . . . , an) then

HHA ` Ψf (ã1, . . . , ãn, b̃) .

The related notion for r.e. relations is the following one:

5.2.10 Definition Let p(x1, . . . , xn) be a number-theoretic relation. A formula
Ψp(x1, . . . , xn) of LA positively numeralwise expresses p(x1, . . . , xn) in HHA iff, for
any a1, . . . , an ∈ N, p(a1, . . . , an) is true iff HHA ` Ψp(ã1, . . . , ãn).

5.2.11 Theorem Let q(x1, . . . , xn, y) be a relation strongly numeralwise expressed
in HHA by the formula Ψq(x1, . . . , xn, y) and let p(x1, . . . , xn) be a relation such
that, for any a1, . . . , an ∈ N, p(a1, . . . , an) ↔ ∃yq(a1, . . . , an, y). Then the formula
∃yΨq(x1, . . . , xn, y) positively numeralwise expresses the relation p(x1, . . . , xn) in
HHA.

Proof: Let us consider a relation p(x1, . . . , xn) such that, for every a1, . . . , an ∈ N,

p(a1, . . . , an) ↔ ∃yq(a1, . . . , an, y) (5.5)

and let Ψq(x1, . . . , xn, y) a formula which strongly numeralwise express in HHA the
relation q(x1, . . . , xn, y). If p(a1, . . . , an) holds, by the equivalence (5.5), there exists
b ∈ N such that q(a1, . . . , an, b) holds; this implies that

HHA ` Ψq(ã1, . . . , ãn, b̃)

5.2. NOTIONS OF REPRESENTABILITY 109

which immediately yields

HHA ` ∃yΨq(ã1, . . . , ãn, y) .

Conversely, if HHA ` ∃yΨq(ã1, . . . , ãn, y), by the constructivity of HHA we deduce
that there exists a closed term t such that

HHA ` Ψq(ã1, . . . , ãn, t) .

Hence, by Propositions 5.2.1 and 5.2.2, there exists a canonical term b̃ such that :

HHA ` Ψq(ã1, . . . , ãn, b̃) (5.6)

Now, let us suppose that p(a1, . . . , an) is false. By the equivalence (5.5) we deduce
that q(a1, . . . , an, b) is false, and so

HHA ` ¬Ψq(ã1, . . . , ãn, b̃) .

But this and (5.6) gives rise to a contradiction. Hence, p(a1, . . . , an) must hold. 2

The following result follows from the previous theorem.

5.2.12 Theorem (i) Every partial recursive function is exhaustively numeralwise
representable in HHA. (ii) Every r.e. relation is positively numeralwise expressible
in HHA.

Proof: Point (ii) easily follows from Theorem 5.2.11 by means of the Projection
Theorem 5.1.9, while Point (i) comes similarly using the Normal Form Theorem
5.1.6 and using the formulas Tn(y, x1, . . . , xn, w) and U(x, y). 2

Now, let N = 〈N, s, +, ∗,=〉 be the standard structure of the natural numbers
(i.e., letN be the standard model of the classical number theory of Peano Arithmetic
PA), and let, for every closed formula A of LA, N |= A denote the fact that the
formula A holds (is satisfied) in the usual classical sense in the structure N . Then,
we can almost immediately translate the content of the Normal Form Theorem 5.1.6,
into the following proposition involving satisfaction on N :

5.2.13 Proposition Let p(x1, . . . , xn) ≡ ∃yq(x1, . . . , xn, y) be an r.e. relation,
where q(x1, . . . , xn, y) is primitive recursive, and let Ψq(x1, . . . , xn, y) be a formula
of LA which strongly numeralwise expresses q(x1, . . . , xn, y) in HHA. Then, there
exists an index e such that

(i). N |= ∀x1 . . .∀xn(∃yΨq(x1, . . . , xn, y) ⇒ ∃wTn(ẽ, x1, . . . , xn, w)).

(ii). N |= ∀x1 . . .∀xn(∃wTn(ẽ, x1, . . . , xn, w) ⇒ ∃yΨq(x1, . . . , xn, y))

110 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

Proof: Let e be the index of p(x1, . . . , xn), determined by the Normal Form Theorem
5.1.6, such that

p(x1, . . . , xn) ↔ ∃wTn(e, x1, . . . , xn, w)

(i) Let us suppose that, for any a1, . . . , an ∈ N and some b ∈ N,

N |= Ψq(ã1, . . . , ãn, b̃) .

Then, since Ψq strongly numeralwise expresses q in HHA, we can deduce that
q(a1, . . . , an, b) holds (otherwise,HHA ` ¬Ψq(ã1, . . . , ãn, b̃) and henceHPA ` ¬Ψq(ã1, . . . , ãn, b̃),
in contrast with the fact thatN is a model ofHPA), then p(a1, . . . , an) ≡ ∃yq(a1, . . . , an, y)
holds and this implies that ∃wTn(e, x1, . . . , xn, w) holds as well. But since Tn

strongly numeralwise expresses the relation Tn in HHA, we have

HHA ` ∃wTn(ẽ, ã1, . . . , ãn, w) ,

which implies
N |= ∃wTn(ẽ, ã1, . . . , ãn, w) .

(ii) The proof of is quite similar to the one of the previous point. 2

The above Proposition 5.2.13, involving the semantical notion of satisfiability on
N , is not sufficient for our future purposes, which require provability inHHA instead
of satisfiability on N . However, we are not interested in replacing N |= . . . with
HHA ` . . . in both points of Proposition 5.2.13. All we need is (i) of Proposition
5.2.13 and the following theorem, which considerably strengthens Point(ii) of the
same proposition. The proof of this theorem is rather involved and cumbersome,
but can be carried out along the lines quoted in [Wilkie, 1975] for a similar result
involving classical arithmetic PA (see remark 5.2.15 below).

5.2.14 Theorem The recursive function Dprim
rel −Wff(x) of Theorem 5.2.7 can be

chosen so to satisfy (in addition to the properties stated in Theorem 5.2.7) also the
following property:

• Let p(x1, . . . , xn) ≡ ∃yq(x1, . . . , xn, y) be a recursively enumerable relation
where q(x1, . . . , xn, y) is a primitive recursive relation, let DPrim

q(n+1) be an ex-

plicit definition of q(x1, . . . , xn, y), and let h be its Gödel number (in the fixed
arithmetization GPrim). Let k = Dprim

rel −Wff(h), and let Ψq(x1, . . . , xn, y) be the
formula of LA whose Gödel number is k (in the fixed arithmetization GLA

).
Then, there exists an index e ∈ N such that:

HHA ` ∀x1 . . .∀xn(∃wTn(e, x1, . . . , xn, w) ⇒ ∃yΨq(x1, . . . , xn, y)) .
2

5.2.15 Remark To better explain what is involved in the result quoted in [Wilkie, 1975], we
need some definitions. First of all, let x < y be an abbreviation of the formula ∃z(x+z = y)
of LA and let ∃x < yA and ∀x < yA be abbreviations of ∃x(x < y ∧A) and ∀x(x < y ∧A)
respectively. Then the set ∆∆∆ of bounded formulas of LA, is the smallest set of formulas
satisfying the following conditions:

5.2. NOTIONS OF REPRESENTABILITY 111

(i). Every atomic formula of LA belongs to ∆∆∆;

(ii). If A,B belong to ∆∆∆, then so are A ∧B, A ∨B and ¬A;

(iii). If A belongs to ∆∆∆, then ∀x < yA ∈∆∆∆ and ∃x < yA ∈∆∆∆, where y 6∈ FV(A).

Also, the sets ΣΣΣn and ΠΠΠn of formulas of LA are so defined by induction on n:

1. ΣΣΣ0 = ΠΠΠ0 = ∆∆∆;

2. ΣΣΣn+1 = {∃x1 . . .∃xkA : A ∈ Πn where none of the xi’s is bounded in A};

3. ΠΠΠn+1 = {∀x1 . . .∀xkA : A ∈ ΣΣΣn where none of the xi’s is bounded in A}.

The result quoted in [Wilkie, 1975] is the following form of Kleene’s Enumeration Theorem.

If n, m ≥ 1, there exists a formula Θ(m+1)
n (e, x1, . . . , xm) of LA, with exactly

m + 1 free variables, such that:

(i). Θ(m+1)
n (e, x1, . . . , xm) ∈ ΣΣΣn;

(ii). For all formulas A(x1, . . . , xm) ∈ ΣΣΣn, there exists an index e ∈ N such
that:

PA ` ∀x1 . . .∀xm(Θ(m+1)
n (e, x1, . . . , xm) ⇔ A(x1, . . . , xm)) .

The proof of this theorem is based on the fact that the usual proof of the enumeration
theorem for ΣΣΣn relations, quoted e.g. in [Kleene, 1952], can be carried out in the formal
system of Peano arithmetic. �

To conclude this Section, let us remark that, given the explicit definition DPrim
q(n+1)

of a primitive recursive relation q(n+1)(x1, . . . , xn, y), it is possible to effectively build
the index e such that, for all a1, . . . , an,

∃yq(n+1)(a1, . . . , an, y) ⇔ ∃wT(e, a1, . . . , an, w)

holds according to Point (ii) of Theorem 5.1.6 (indeed, this is the way according to
which one can prove the Enumeration Theorem 5.1.8). Also in this case, we can
assert the existence of a general recursive function Dprim

rel −Ix(x) (indeed, primitive
recursive) such that:

• Dprim
rel −Ix(x) is the recursive function associating, with any natural number,

considered as the Gödel number of an explicit definition DPrim
p(n) of a primitive

recursive relation p(n+1)(x1, . . . , xn, y), an index of the recursively enumerable
relation ∃yp(n+1)(x1, . . . , xn, y) according to Theorem 5.1.6.

The previous results can be summarized in the following theorem:

5.2.16 Theorem There exist two 1-ary primitive recursive functions Dprim
rel −Wff(x)

and Dprim
rel −Ix(x) such that, for any h ∈ N, considered as the Gödel number of

an explicit definition of a primitive recursive relation p(x1, . . . , xn), the following
conditions are satisfied:

112 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

(i). Dprim
rel −Wff(h) = k is the Gödel number of a formula Ψp(x1, . . . , xn) in the

fixed arithmetization of LA (that is k = pΨp(x1, . . . , xn)q) which strongly

numeralwise expresses the relation p
(n)
h (x1, . . . , xn) in HHA.

(ii). If n > 1, that is Ψp(x1, . . . , xn) contains at least two variables, then Dprim
rel −Ix(h) =

e is an index of recursively enumerable relation ∃yp(n)(x1, . . . , xn−1, y) accord-
ing to Theorem 5.1.6.

(a) N |= ∀x1 . . .∀xn−1(∃yΨp(x1, . . . , xn−1, y) ⇒ ∃wTn(ẽ, x1, . . . , xn−1, w));

(b) HHA ` ∀x1 . . .∀xn−1(∃wTn(ẽ, x1, . . . , xn−1, w) ⇒ ∃yΨp(x1, . . . , xn−1, y));

(c) {〈a1, . . . , an−1〉 | HHA ` ∃yΨp(ã1, . . . , ãn−1, y)}
= {〈a1, . . . , an−1〉 | N |= ∃yΨp(ã1, . . . , ãn−1, y)};

(d) {〈a1, . . . , an〉 | HHA ` ∃wTn(ẽ, ã1, . . . , ãn, w)}
= {〈a1, . . . , an〉 | N |= ∃wTn(ẽ, ã1, . . . , ãn, w)}.

2

5.3 The formal system HA∗

In this section we will present a formal system which is constructive but not strongly
constructive. To this aim we introduce a fundamental result of proof-theory, the so
called partial reflection principle. Detailed discussions on this principle can be found
in [Troelstra, 1973a, Girard, 1987].

Let
H = HHA + {A1, . . . , An}

be the Hilbert-style calculus obtained by adding the axioms A1, . . . , An to HHA.
Moreover, let H(v1, . . . , vn) be any formula of LA whose free variables are exactly
v1, . . . , vn, with n ≥ 1, and let h ∈ N. We denote with

Proof h
H/H(n)(y, x1, . . . , xn)

the number-theoretic relation such that, for every b, a1, . . . , an ∈ N, the following
holds:

• Proof h
H/H(n)(b, a1, . . . , an) is true iff b is the Gödel number of a proof π of the

formula H(ã1/v1, . . . , ãn/vn) in the calculus H such that dg(π) ≤ h.

Since, the relation Proof h
H/H(n)(y, x1, . . . , xn) is primitive recursive, by Theorem

5.2.7 it is strongly numeralwise representable in HHA. Now, we can choose an
appropriate formula of LA strongly numeralwise expressing this relation in HHA so
to satisfy the following theorem.

5.3. THE FORMAL SYSTEM HA∗ 113

5.3.1 Theorem (Partial Reflection Principle) It is possible to choose the re-
cursive function Dprim

rel −Wff(x) so as to satisfy the following condition:

• Let H = HHA +{A1, . . . , An} be the Hilbert-style calculus obtained by adding
the axioms A1, . . . , An to HHA. Let H(v1, . . . , vn) be any formula of LA

whose free variables are exactly v1, . . . , vn (n ≥ 1). Then, there is an ex-
plicit definition of the relation Proof h

H/H(n)(y, x1, . . . , xn) with Gödel number

k (in the fixed arithmetization GPrim), such that, if m = Dprim
rel −Wff(k), and

Proof h
H/H(n)(y, x1, . . . , xn) is the formula of LA strongly numeralwise express-

ing the relation Proof h
H/H(n)(y, x1, . . . , xn) in HHA, whose Gödel number is m

(in the fixed arithmetization GLA
of LA), then:

H ` ∀x1 . . .∀xn(Proof h
H/H(n)(y, x1, . . . , xn) ⇒ H(x1, . . . , xn)) .

2

Henceforth, with
Proof h

H/H(n)(y, x1, . . . , xn)

we will denote some fixed formula of LA strongly numeralwise expressing the relation
Proof h

H/H(n)(y, x1, . . . , xn) in HHA and satisfying the previous theorem.
The reader should observe that a full reflection principle does not hold as we

discuss in Remark 5.3.2.

5.3.2 Remark Let
Proof H/H(n)(y, x1, . . . , xn)

be the predicate such that, for any b, a1, . . . , an ∈ N,

• Proof H/H(n)(b, a1, . . . , an) is true iff b is the Gödel number of a proof π of the formula
H(ã1/v1, . . . , ãn/vn) in the calculus H (no bound is given on the logical complexity
of π).

It is well known that any relation Proof H/H(n)(y, x1, . . . , xn) is primitive recursive and hence
it is strongly numeralwise expressible in HHA.

Now, let us consider the Hilbert-style calculus for Peano arithmetic HPA (for which the
partial reflection principle holds too) and the formula in one free variable ∃z(z+z=x). Then,
Proof HPA/∃z(z+z=x)(y, x) is the predicate such that, for any b, a ∈ N:

• Proof HPA/∃z(z+z=x)(b, a) is true iff b is the Gödel number of a proof π of the formula
∃z(z+z=ã) in the calculus HPA.

Let us assume, by contradiction, that there exists a formula of LA

ProofHPA/∃z(z+z=x)(y, x)

strongly numeralwise expressing Proof HPA/∃z(z+z=x)(y, x) in HHA and such that the full
reflection principle holds, that is:

HPA ` ∀x(ProofHPA/∃z(z+z=x)(y, x) ⇒ ∃z(z+z=x)) .

114 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

This implies that

HPA ` ∃yProofHPA/∃z(z+z=x)(y, s0) ⇒ ∃z(z+z=s0)) ,

and hence
HPA ` ¬∃z(z+z=s0) ⇒ ¬∃yProofHPA/∃z(z+z=x)(y, s0) .

Now, since
HPA ` ¬∃z(z+z = s0)

we can deduce, by modus ponens, that

HPA ` ¬∃yProofHPA/∃z(z+z=x)(y, s0) .

But this means that there is no proof of ∃z(z+z=s0) in HPA, and this amount to a proof
of consistency of HPA developed inside HHA, and this contradicts Gödel’s Second Incom-
pleteness Theorem. �

Now, we notice that, given the calculus H = HHA +{A1, . . . , An} and a formula
H(v1, . . . , vn), for any h ∈ N the explicit definition of the primitive recursive rela-
tion Proof h

H/H(n)(y, x1, . . . , xn) considered in Theorem 5.3.1 can be obtained in an
effective way. Thus, we can assert that:

5.3.3 Proposition Given a calculus H = HHA + {A1, . . . , Am} and a formula
H(v1, . . . , vn) ∈ LA with exactly n free variables (n ≥ 1), there exists a recursive
function PrH/H(n)(x) (indeed a primitive recursive function) associating, with any

h ∈ N, the Gödel number of the explicit definition of Proof h
H/H(n)(y, x1, . . . , xn)

considered in 5.3.1. 2

Now, given an Hilbert-style calculus H, a formula A ∈ LA, and an integer h, we
recall that (according to Section 2.1) A is h-provable in H iff `h

H A. Namely, there
exists a sequence B1, . . . , Bm of formulas of LA such that: dg({B1, . . . , Bm}) ≤ h,
and, for any i with i = 1, . . . ,m, either Bi is an axiom of H or it is obtained by
applying a rule of H to a set of formulas {C1, . . . , Cp} ⊆ {B1, . . . , Bi−1}.

5.3.4 Theorem Let H = HHA + {A1, . . . , Am} be a consistent Hilbert-style calcu-
lus. Then, there exists a recursive function F such that, for any h ∈ N, if F(h) = k
then:

(i). H ` ¬∃wT (k̃, k̃, w);

(ii). ¬T (k̃, k̃, w) is not h-provable in H.

Proof: Given a consistent Hilbert-style calculus

H = HHA + {A1, . . . , Am}

(m ≥ 0 i.e. the set of the extra-axioms may be empty), let us consider the formula
¬∃wT (v, v, w). We recall that, by Proposition 5.3.3, the function PrH/¬∃wT (v,v,w)(x)

5.3. THE FORMAL SYSTEM HA∗ 115

associates, with any h ∈ N, the Gödel number (in the given arithmetization GPrim

of LA) of an explicit definition of the primitive recursive relation

Proof h
H/¬∃wT (v,v,w)(y, x) .

considered in Theorem 5.3.1. Hence,

Dprim
rel −Wff(PrH/¬∃wT (v,v,w)(h))

is the Gödel number (in the given arithmetization GLA
of LA) of the formula

Proof h
H/¬∃wT (v,v,w)(y, x)

considered in Theorem 5.3.1. Having this in mind, we introduce the function F so
defined: for any i ∈ N:

F(i) = Dprim
rel −Ix(PrH/¬∃wT (v,v,w)(i)) .

Thus, F is the function associating, with any i ∈ N, an index, according to Theorem
5.1.6, of the r.e. relation

∃yProof i
H/¬∃wT (v,v,w)(y, x) ,

where PrH/¬∃wT (v,v,w)(i) provides an explicit definition of the primitive recursive
relation Proof H/¬∃wT (v,v,w)(y, x). Since F is obtained by composition of two recursive
functions, it is recursive.

Now, let us consider any h ∈ N and let F(h) = k. By Points (ii)a, (ii)b and (ii)c
of Theorem 5.2.16, we have:

N |= ∀x(∃yProof h
H/¬∃wT (v,v,w)(y, x) ⇒ ∃wT (k̃, x, w)) (5.7)

HHA ` ∀x(∃wT (k̃, x, w) ⇒ ∃yProof h
H/¬∃wT (v,v,w)(y, x)) (5.8)

{a ∈ N | HHA ` ∃wT (k̃, ã, w)} = {a ∈ N | N |= ∃wT (k̃, ã, w)} (5.9)

Moreover, by the Partial Reflection Principle (Theorem 5.3.1),

H ` ∀x(Proof h
H/¬∃wT (v,v,w)(y, x) ⇒ ¬∃wT (x, x, w)) (5.10)

which implies

H ` ∀x(∃yProof h
H/¬∃wT (v,v,w)(y, x) ⇒ ¬∃wT (x, x, w)) (5.11)

Now, from (5.8) and (5.11) we get:

H ` ∀x(∃wT (k̃, x, w) ⇒ ¬∃wT (x, x, w))

which implies, by an elimination of the universal quantifier

H ` ∃wT (k̃, k̃, w) ⇒ ¬∃wT (k̃, k̃, w) . (5.12)

116 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

But, since (A ⇒ ¬A) ⇒ ¬A is provable in HINT, this implies

H ` ¬∃wT (k̃, k̃, w) . (5.13)

Now, to conclude the proof, we have to show that ¬∃wT (k̃, k̃, w) is not h-provable
in H. Let us suppose the contrary. Then the relation ∃yProof h

H/¬∃wT (v,v,w)(y, k̃)
holds and hence, since Proof h

H/¬∃wT (v,v,w)(y, x) strongly numeralwise expresses in

HHA the predicate Proof h
H/¬∃wT (v,v,w)(y, x),

N |= ∃yProof h
H/¬∃wT (v,v,w)(y, k̃)

which, by (5.7), implies
N |= ∃wT (k̃, k̃, w) .

Hence, by (5.9), we obtain

HHA ` ∃wT (k̃, k̃, w) . (5.14)

But, HHA ⊆ H and hence (5.14) and (5.13) imply that H is inconsistent, contra-
dicting our our hypothesis. Thus ¬∃wT (k̃, k̃, w) is not h-provable in H. 2

Now, let us consider the enumeration E(1) of all the partial recursive functions in
one variable, defined by means of the Enumeration Theorem in Section 5.1. Then,
we can define a recursive function Dfun−Wff(x) associating, with any i ∈ N (seen
as the Gödel number of an explicit definition of a partial recursive function f , in
a suitable arithmetization GPR of the formalism of partial recursive functions), the
Gödel number of a formula of LA with exactly two free variables which exhaustively
numeralwise expresses the partial recursive function fi of the enumeration E(1). The
justification of the recursiveness of the function Dfun−Wff(x) is similar to the one
given for the function Dprim

fun −Wff(x) in Section 5.2.
Now, ∀x∀zHj(x, z) will denote the following formula of LA:

∀x∀z((Ψj(x, z) ∧ ¬∃wT (z, z, w)) ∨ ¬(Ψj(x, z) ∧ ¬∃wT (z, z, w))) ,

where pΨfj
(x, z)q = Dfun−Wff(j) is the Gödel number of the formula Ψfj

(x, z)
exhaustively numeralwise expressing in HHA the function fj , and we indicate with
Ψj(x, z) the formula Ψfj

(x, z).
Starting from formulas ∀x∀zHj(x, z), we define the sequence of Hilbert-style

calculi {Hj}j∈ω as follows, for any j ∈ N:

Hj = HHA + {∀x∀zHj(x, z)} .

Since, for any j ∈ ω, the function Fj associated with the calculus Hj by Theorem
5.3.4 can be effectively determined, starting from an explicit definition of this function
(which is indeed primitive recursive) we can effectively determine an index i for this
function in the enumeration E(1) such that fi ' Fj . Hence, we can assert that there
exists a general recursive function G with the following properties:

5.3. THE FORMAL SYSTEM HA∗ 117

• G is a recursive function associating, with any j ∈ N (seen as the index of the
Hilbert-style calculus Hj in the enumeration {Hj}j∈ω), the index of Fj in the
enumeration E(1).

Thus we have:

5.3.5 Proposition For any j ∈ N, G(j) is the index in the enumeration E(1) of
the recursive function fG(j) such that: for any h ∈ N, if fG(j)(h) = k then Hj `
¬∃wT (k̃, k̃, w) but ¬∃wT (k̃, k̃, w) is not h-provable in Hj . 2

Now, let us consider the function G. Since G is general recursive, we can apply
the Fixed Point Theorem 5.1.11 to deduce that there exists an index i∗ ∈ N such
that:

fi∗ ' fG(i∗) ' Fi∗ .

Let us denote with Ψf∗(x, z) the formula Ψi∗(x, z) of LA which exhaustively numer-
alwise represents the recursive function f∗ ' Fi∗ in HHA; that is

pΨf∗(x, z)q = Dfun−Wff(i∗)

(where pΨf∗(x, z)q = Dfun−Wff(i∗) is Gödel number of the formula Ψf∗(x, z)). Also,
let ∀x∀zH∗(x, z) be the following formula of LA:

∀x∀z((Ψf∗(x, z) ∧ ¬∃wT (z, z, w)) ∨ ¬(Ψf∗(x, z) ∧ ¬∃wT (z, z, w))) .

Finally, let us denote with H∗ the Hilbert-style calculus

Hi∗ = HHA + {∀x∀zH∗(x, z)} .

Since f∗(x) is a recursive function and Ψf∗(x, z) exhaustively numeralwise represents
it in HHA, by Proposition 5.3.5 we obtain:

5.3.6 Lemma For any h ∈ N, if k = f∗(h), then:

(i). H∗ ` ¬∃wT (k̃, k̃, w);

(ii). ¬∃wT (k̃, k̃, w) is not h-provable in H∗.

2

Now, let HA∗ be the formal system generated by the Hilbert-style calculus H∗.
That is,

HA∗ = (LA, |∼H∗ ,H
∗) .

Of course, HA∗ is consistent, since the formula ∀x∀zH∗(x, z) holds in N . We will
prove that HA∗ is a constructive formal system, but it is not strongly constructive.

First of all, we prove that HA∗ is a constructive formal system, that is we show
that its set of theorems satisfies the disjunction property and the explicit definability
property for closed formulas.

118 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

To this aim, let us consider the pseudo-natural deduction calculus NDHA∗ for
HA∗ obtained by adding to NDHA the axiom-rule

`̀̀ H∗(x, z)
H∗

It is easy to verify that NDHA∗ is a presentation for the formal system HA∗.
Now, let us consider the generalized rule

RHA = Cut ∪ Subst ∪ Id1 ∪ Id2 ∪ Sum ∪Prod .

and the abstract calculus

IDHA(Π) = ID(RHA,Seq(Π)) .

defined and studied in Section 4.2. It is easy to prove the following fact:

5.3.7 Lemma For any proof π : Γ `̀̀ A belonging to NDHA, if Γ is LA-evaluated
in IDHA(NDHA∗) then A is LA-evaluated in IDHA(NDHA∗). 2

5.3.8 Lemma For any proof π : Γ `̀̀ A belonging to NDHA∗ , if Γ is LA-evaluated
in IDHA(NDHA∗) then A is LA-evaluated in IDHA(NDHA∗).

Proof: RHA contains Cut and Subst, and hence, by Lemma 3.2.2, we immediately
have that IDHA(NDHA∗) contains a proof τ : `̀̀ A; hence Point (i) of Definition 4.1.1
is satisfied. To prove Point (ii) we proceed by induction on depth(π).
Basis: If depth(π) = 0 then: either the only rule applied in π is an assumption
introduction, or it is one of the axiom-rules id1, Sum and Prod, or it is the axiom-
rule H∗. Since we have already discussed the other cases in Lemma 4.2.5, here we
treat only the last case. Thus, let

π : Γ `̀̀ A ≡
`̀̀ H∗(x, z)

H∗ .

First of all, by Point (i), there exists a proof τ of this sequent in IDHA(NDHA∗),
that is:

τ : `̀̀ H∗(x, z) ∈ IDHA(NDHA∗)

Now, let us consider a closed instance θH∗(x, z) of H∗(x, z). Since the only free
variables in H∗(x, z) are x and z and NDHA∗ is Subst-closed, there exists a proof

π1 : `̀̀ H∗(t, t′) ∈ NDHA∗

where t = θx and t′ = θz. Since t, t′ are closed terms, by Proposition 4.2.3 there
exist canonical terms h̃, k̃ such that `̀̀ t = h̃ and `̀̀ t′ = k̃ are provable in NDHA.
Therefore, by the closure under Id2 of this calculus, we have that there exists a
proof:

π2 : `̀̀ H∗(h̃, k̃) ∈ NDHA∗ .

5.3. THE FORMAL SYSTEM HA∗ 119

Let us consider the formula Ψf∗(h̃, k̃). By the assumptions made on this formula
and on the function f∗, we have that, if k = f∗(h), then

HHA ` Ψf∗(h̃, k̃)

Therefore, since NDHA is a calculus for the formal system generated by HHA, we
immediately deduce that there exists a proof

π3 : `̀̀ Ψf∗(h̃, k̃) ∈ NDHA

and hence, still by the closure of NDHA under the rule Id2,

π4 : `̀̀ Ψf∗(t, t′) ∈ NDHA

Since `̀̀ Ψf∗(t, t′) ∈ Seq(NDHA), Lemma 5.3.7 implies that Ψf∗(t, t′) is LA-evaluated
in IDHA(NDHA∗). Now, let us consider the formula ¬∃wT (k̃, k̃, w). By Lemma 5.3.6
we immediately deduce that it is provable in NDHA∗ and hence

`̀̀ ¬∃wT (k̃, k̃, w) ∈ Seq(NDHA∗) .

Since this is a negated formula, by Definition 4.1.1 we immediately deduce that it
is LA-evaluated in IDHA(NDHA∗). Still by closure under id2 of IDHA(NDHA∗),
this implies that ¬∃wT (t, t, w) is LA-evaluated in IDHA(NDHA∗), too. Since both
Ψf∗(t, t′) and ¬∃wT (t, t, w) are LA-evaluated in IDHA(NDHA∗), we deduce that
also their conjunction

Ψf∗(t, t′) ∧ ¬∃wT (t, t, w)

is LA-evaluated in ID(NDHA∗). This immediately implies that H∗(t, t′) is LA-
evaluated in ID(NDHA∗). On the other hand, if k 6= f∗(h), then (since f∗ is a total
function) it is easy to verify that HHA ` ¬Ψf∗(h̃, k̃), and this immediately implies
that

¬(Ψf∗(t, t′) ∧ ¬∃wT (t, t, w))

is provable in ID(NDHA∗); since this is a negated formula it is immediately LA-
evaluated in this set, and hence H∗(t, t′) is LA-evaluated in ID(NDHA∗). Since θ is
any closed substitution, we have that H∗(x, z) is LA-evaluated in IDHA(NDHA∗).

This concludes the proof of the basis case of the induction. The proof of the
induction step goes by cases on the last rule applied in π, and since H∗ is the only
rule of NDHA∗ which does not belong to NDHA, this proof coincides with the one
given for Lemma 4.2.5. 2

5.3.9 Theorem HA∗ is a constructive formal system with respect to (Dp) and
(Ed).

Proof: Let A ∨ B be a closed formula such that A ∨ B ∈ Theo(HA∗). Then π : `̀̀
A ∨ B ∈ NDHA∗ . Since NDHA∗ is a RHA-closed, by Theorem 2.3.9, we have that
NDHA∗ ≈ IDHA(NDHA∗). Hence, there exists τ : `̀̀ A ∨ B ∈ IDHA(NDHA∗). By
Lemma 5.3.8, since A∨B is a closed formula, we have that at least one between the
sequents `̀̀ A and `̀̀ B is provable in IDHA(NDHA∗), that is, either A ∈ Theo(HA∗)
or B ∈ Theo(HA∗). The proof of the explicit definability property is similar. 2

120 Chapter 5. A CONSTRUCTIVE BUT NOT STRONGLY . . .

Now, let us suppose that HA∗ is a strongly constructive formal system. This
implies that there exist a strongly constructive calculus C which is a presentation
for HA∗ and agrees with it. In other words, recalling the definitions given in Section
2.5, there exist a non-increasing generalized rule R and a function φ : N → N such
that

(I). C is strongly constructive w.r.t. R and φ. That is:

(a) C is uniformly R-closed w.r.t φ; ;

(b) For any Π ⊆ C, Theo(R∗
HA([Lambda])) is constructive;

(II). C is a presentation for HA∗. That is, Theo(C) = Theo(|∼H∗).

(III). C agrees with HA. That is: for any Π ⊆ C and for any h ∈ N such that
dg(Π) ≤ h, there exists a positive integer k such that Theo(Π) ⊆ Theo(|∼k

H∗).

Since, by elimination of the universal quantifier, we get H∗ ` H∗(x, z), we have

H∗(x, z) ∈ Theo(|∼H∗) .

Thus, by property (II), there must exist a proof

π : `̀̀ H∗(x, z) ∈ C .

Let us consider the set of proofs [π], and let hπ be the degree of π. Then dg([π]) ≤ hπ.
Hence, by Proposition 2.4.8, there exists a positive integer h′ such that, for any
A ∈ Theo(ID(RHA,Seq([π]))), there exists a proof π′ : `̀̀ A ∈ C with dg(π′) ≤ h′.
Let

Π =
{
π′ : `̀̀ A ∈ C : A ∈ Theo(ID(R,Seq([π]))) and dg(π′) ≤ h′

}
.

Now, by Point (i) of Proposition 2.3.8, we have that

ID(RHA,Seq([π]))) = R∗
HA([π])

and hence, by strong constructiveness of C (namely by Point (I)b), we deduce that
the set of proofs ID(R∗

HA,Seq([π])) is constructive and hence in constructive the set
of proofs Π.

Now, since H∗(x, z) belongs to ID(R∗
HA,Seq([π])) and R is standard (that is it

includes the generalized rule Subst); it follows that any closed instance of H∗(x, z)
has a proof in Π. Let us consider any a ∈ N, and let b = f∗(a); by Lemma 5.3.6 and
by the fact that Ψf∗(x, z) exhaustively numeralwise expresses the function f∗(x),
we have that

Ψf∗(ã, b̃) ∧ ¬∃wT (̃b, b̃, w)

is provable in HHA. Now, since Π is constructive and NDHA∗ is consistent, we
deduce that

Ψf∗(ã, b̃) ∧ ¬∃wT (̃b, b̃, w) ∈ Theo(Π) .

5.3. THE FORMAL SYSTEM HA∗ 121

We remark that this fact holds for any pair of natural numbers a, b such that b =
f∗(a).

Now, let us consider the index k such that, according to property (III), Theo(Π) ⊆
Theo(|∼k

H∗) and h′ ≤ k; moreover, let us suppose that j = f∗(k). Then, by the above
discussion, we have that

Ψf∗(k̃, j̃) ∧ ¬∃wT (j̃, j̃, w) (5.15)

belongs to Theo(|∼k
H∗), hence it is an k-provable formula. Now, let us consider the

following instance of the axiom schema (A ∧B) ⇒ B:

(Ψf∗(k̃, j̃) ∧ ¬∃wT (j̃, j̃, w)) ⇒ ¬∃wT (k̃, k̃, w) . (5.16)

Such an instance, has a degree less than k, namely less than the degree of H∗(x, z),
the latter formula belonging to Theo(Π). Hence, by applying the modus ponens to
the formulas (5.15) and (5.16), we get

¬∃wT (j̃, j̃, w) ∈ Theo(`k
H∗) .

But this contradicts Lemma 5.3.6. Hence, we must conclude that there cannot exist
a strongly constructive calculus for HA∗.

5.3.10 Theorem HA∗ is not a strongly constructive formal system. 2

122 BIBLIOGRAPHY

Bibliography

[Anderson, 1972] Anderson, J. (1972). Superconstructive propositional calculi with
extra schemes containing one variable. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 18:113–130.

[Avellone et al., 1996] Avellone, A., Fiorentini, C., Mantovani, P., and Miglioli, P.
(1996). On maximal intermediate predicate constructive logics. Studia Logica,
57:373–408.

[Avron, 1991] Avron, A. (1991). Simple consequence relations. Journal of Informa-
tion and Computation, 92:276–294.

[Bertoni et al., 1983] Bertoni, A., Mauri, G., and Miglioli, P. (1983). On the power
of model theory to specify abstract data types and to capture their recursiveness.
Fundamenta Informaticae, IV.2.

[Bertoni et al., 1984] Bertoni, A., Mauri, G., Miglioli, P., and Ornaghi, M. (1984).
Abstract data types and their extension within a constructive logic. In Kahn, G.,
MacQueen, D., and Plotkin, G., editors, Semantics of Data Types, volume 173,
pages 177–195. Springer-Verlag, LNCS.

[Chang and Keisler, 1973] Chang, C. and Keisler, H. (1973). Model Theory. North-
Holland.

[Davey and Priestley, 1990] Davey, B. and Priestley, H. (1990). Introduction to Lat-
tices and Order. Cambridge University Press.

[Dummett, 1977] Dummett, M. (1977). Elements of Intuitionism. Claredon Press,
Oxford.

[Gabbay, 1970] Gabbay, D. (1970). The decidability of the Kreisel-Putnam system.
Journal of Symbolic Logic, 35:431–437.

[Gabbay, 1981] Gabbay, D. (1981). Semantical Investigations in Heyting’s Intuition-
istic Logic. Reidel, Dordrecht.

[Gabbay, 1994] Gabbay, D. (1994). What is a logical system. In Gabbay, D., editor,
What is a Logical System ?, pages 179–216. Oxford Science Publications.

123

124 BIBLIOGRAPHY

[Gallier, 1991] Gallier, J. (1991). Constructive logics. Part I: A tutorial on proof
systems and typed λ-calculi. Technical Report 8, Digital Equipment Corporation.

[Gentzen, 1969] Gentzen, G. (1969). Investigations into logical deduction. In Sz-
abo, M., editor, The Collected Works of Gerhard Gentzen, pages 68–131. North-
Holland.

[Girard, 1987] Girard, J. (1987). Proof Theory and Logical Complexity. Vol 1. Bib-
liopolis, Napoli.

[Girard et al., 1989] Girard, J., Taylor, P., and Lafont, Y. (1989). Proofs and types.
Cambridge University Press.

[Görnemann, 1971] Görnemann, S. (1971). A logic stronger than intuitionism. Jour-
nal of Symbolic Logic, 36:249–261.

[Howard, 1980] Howard, W. (1980). The formulae-as-types notion of construction.
In Seldin, J. and Hindley, J., editors, To H.B. Curry: Essay on Combinatory
Logic, Lambda-calculus and Formalism. Academic Press.

[Kleene, 1945] Kleene, S. (1945). On the interpretation of intuitionistic number
theory. Journal of Symbolic Logic, 10(4):109–124.

[Kleene, 1952] Kleene, S. (1952). Introduction to Metamathematics. Van Nostrand,
New York.

[Kreisel and Putnam, 1957] Kreisel, G. and Putnam, H. (1957). Eine Unableits-
barkeitsbeweismethode für den intuitionistischen Aussagenkalkül. Archiv für
Mathematische Logik und Graundlagenforschung, 3:74–78.

[Lau and Ornaghi, 1992] Lau, K. and Ornaghi, M. (1992). Towards a formal frame-
work for deductive synthesis of logic programs. Technical Report 96-93, Diparti-
mento di Scienze dell’Informazione, Universit degli Studi di Milano.

[Lukasiewicz, 1952] Lukasiewicz, J. (1952). On the intuitionistic theory of deduction.
Indagationes Mathematicae, 14:69–75.

[Martin-Löf, 1984] Martin-Löf, P. (1984). Intuitionistic Type Theory. Studies in
Proof Theory. Bibliopolis, Napoli.

[Miglioli, 1992] Miglioli, P. (1992). An infinite class of maximal intermediate propo-
sitional logics with the disjunction property. Archive for Mathematical Logic,
31:415–432.

[Miglioli et al., 1988] Miglioli, P., Moscato, U., and Ornaghi, M. (1988). Construc-
tive theories with abstract data types for program synthesis. In Skordev, D.,
editor, Mathematical Logic and its Applications, pages 293–302. Plenum Press,
New York.

BIBLIOGRAPHY 125

[Miglioli et al., 1994a] Miglioli, P., Moscato, U., and Ornaghi, M. (1994a). Abstract
parametric classes and abstract data types defined by classical and constructive
logical methods. Journal of Symbolic Computation, 18:41–81.

[Miglioli et al., 1994b] Miglioli, P., Moscato, U., and Ornaghi, M. (1994b). An im-
proved refutation system for intuitionistic predicate logic. Journal of Automated
Reasoning, 12:361–373.

[Miglioli et al., 1997] Miglioli, P., Moscato, U., and Ornaghi, M. (1997). Avoiding
duplications in tableau systems for intuitionistic logic and Kuroda logic. Logic
Journal of the IGPL, 5(1):145–167.

[Miglioli and Ornaghi, 1979] Miglioli, P. and Ornaghi, M. (1979). A purely logical
computing model: the open proofs as programs. Technical Report MIG-7, Istituto
di Cibernetica dell’Universit di Milano.

[Miglioli and Ornaghi, 1981] Miglioli, P. and Ornaghi, M. (1981). A logically jus-
tified model of computation I & II. Fundamenta Informaticae, IV(1, 2):151–
172,277–341.

[Minari, 1986] Minari, P. (1986). On the extension of intuitionistic propositional
logic with Kreisel-Putnam’s and Scott’s schemas. Studia Logica, 45:455–468.

[Momigliano and Ornaghi, 1994] Momigliano, A. and Ornaghi, M. (1994). Regular
search spaces as a foundation of logic programming. In Dyckhoff, R., editor, Pro-
ceedings of the 4th International Workshop on Extensions of Logic Programming,
volume 798 of LNAI, pages 222–254, Berlin. Springer.

[Odifreddi, 1989] Odifreddi, P. (1989). Classical Recursion Theory, volume 125 of
Studies in Logic and the Foundations of Mathematics. North-Holland.

[Ono, 1972] Ono, H. (1972). A study of intermediate predicate logics. Publications
of the Research Institute for Mathematical Sciences, Kyoto University, 8:619–649.

[Prawitz, 1965] Prawitz, D. (1965). Natural Deduction. Almquist and Winksell.

[Prawitz, 1971] Prawitz, D. (1971). Ideas and results in proof theory. In Proceedings
of the Second Scandinavian Logic Symposium, pages 235–307. North-Holland.

[Prawitz, 1977] Prawitz, D. (1977). Meaning and proofs: on the conflict between
classical and intuitionistic logic. Theoria, 43:2–40.

[Prawitz, 1978] Prawitz, D. (1978). Proofs and the meaning and the completeness
of the logical constants. In Hintikka, J., Niiniluoto, I., and E.saarinen, editors,
Essays on Mathematical and Philosophical Logic, pages 25–40. North-Holland.

[Rogers, 1967] Rogers, H. (1967). Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill.

126 BIBLIOGRAPHY

[Smorynski, 1973] Smorynski, C. (1973). Applications of Kripke models. In Troel-
stra, A., editor, Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis, volume 344 of Lecture Notes in Mathematics, pages 324–391. Springer-
Verlag.

[Takeuti, 1975] Takeuti, G. (1975). Proof Theory. North-Holland.

[Troelstra, 1973a] Troelstra, A., editor (1973a). Metamathematical Investigation of
Intuitionistic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathemat-
ics. Springer-Verlag.

[Troelstra, 1973b] Troelstra, A. (1973b). Normalization theorem for systems of nat-
ural deduction. In Troelstra, A., editor, Metamathematical Investigation of Intu-
itionistic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics,
pages 275–315. Springer-Verlag.

[Troelstra, 1973c] Troelstra, A. (1973c). Realizability and functional interpretations.
In Troelstra, A., editor, Metamathematical Investigation of Intuitionistic Arith-
metic and Analysis, volume 344 of Lecture Notes in Mathematics, pages 175–274.
Springer-Verlag.

[Troelstra, 1977] Troelstra, A. (1977). Aspects of constructive mathematics. In
Barwise, J., editor, Handbook of Mathematical Logic. North-Holland.

[Troelstra and van Dalen, 1988a] Troelstra, A. and van Dalen, D. (1988a). Con-
structivism in Mathematics: An introduction, volume 121/122 of Studies in Logic
and the Foundations of Mathematics. North-Holland.

[Troelstra and van Dalen, 1988b] Troelstra, A. and van Dalen, D. (1988b). Con-
structivism in Mathematics: An introduction. Volume 2, volume 122 of Studies in
Logic and the Foundations of Mathematics. North-Holland.

[Voronkov, 1987] Voronkov, A. (1987). Deductive program synthesis and Markov’s
principle. In Budach, L., Bukharajev, R., and Lupanov, O., editors, Fundamentals
of Computation Theory, pages 479–482. International Conference FCT’87, Kazan,
USSR, Springer-Verlag.

[Wilkie, 1975] Wilkie, A. (1975). On models of arithmetic - answers to two problems
raised by H. Gaifman. Journal of Symbolic Logic, 40(1):41–47.

[Wójcicki, 1988] Wójcicki, R. (1988). Theory of logical calculi: Basic theory of con-
sequence operations, volume 199 of Studies in Epistemology, Logic, Methodology,
and Philosophy of Science. Kluwer Academic Publishers.

Index

R-subcalculus, 29
vR, 29

abstract calculus, 31
ID(R,Σ), 31

agrees, 28
anti-Scott Principle, 67
attributes, 26

Seq(.), 26, 27
Theo(.), 27
Wffs(.), 26, 27
dg(.), 26

BHK interpretation, 2

calculus (over LA), 26
canonical terms, 82
Church’s Thesis, 97, 100
closure

under generalized rules, 29
of R, 30
R∗, 30

under subproofs, 26
[Π]C, 26

closure system, 20
combining conjunction, 21
complete partial order, 30
consequence relation, 20
constructive

calculus, 39
formal system, 39
set of proofs, 39

constructive incompatibility, 67, 97
cover set, 87
Curry-Howard isomorphism, 2
cut-elimination, 39

deduction property, 21
degree

dg(.), 10, 14
of a natural deduction proof, 14
of an Hilbert-style proof, 10

depth
R-depth, 32
depth(.), 14
of a ID(R,Σ) proof, 32
of a natural deduction proof, 14

derivability relation, 19
|∼, 19
base theory of, 20
determined by H, 22
|∼H, 22

regular-, 24
theories of, 20

TH(|∼), 20
Descending Chain Principle, 89
disjunction property, 38

DP, 38
DPopen, 38

empty sequence, 28
ε, 28

Enumeration Theorem, 102
equality axioms, 81
equivalent calculi, 27

≈, 27
evaluation, 46

Neg-, 60
closed-, 80

explicit definability property, 38
ED, 38
EDopen, 38

explicit definition, 101

127

128 INDEX

first order language, 9
L, 9
LA, 9
pure-, 9

Fixed Point Theorem, 104
forcing relation, 44

‖−−, 44
formal system, 24

ASt, 67
Grz, 55
HA, 81
INT, 47
KP, 58
Kur, 54
St, 67
HA∗, 118
presentation of, 27

formula, 9
free variables of a proof, 14
function

number theoretic-, 99
partial recursive-, 101
primitive recursive-, 100
recursive-, 99

generalized induction, 87
generalized rule, 28

Cut, 46
Cut+, 29
E∧, 73
E∀, 73
Mp, 29, 73
R-In⇒∃, 59
R-In⇒∨, 59
R-In¬, 68
R-Gen, 55
Id1, 83
Id2, 83
Prod, 83
Sum, 83
Subst, 28
Wk-l, 29
Wk-r, 29
k-bounded, 36

domain of, 28
non-increasing, 36
standard, 29
with the subformula property, 37

Grzegorczyck Principle, 55

Harrop
formula, 73
theory, 73

Heyting arithmetic, 81
Hilbert-style system, 21

HCL, 11
HINT, 10
calculi, 10

induction axiom schema, 81
inference, 12
intermediate logic, 44
internal implication, 21
intuitionistic arithmetic, 80
isoinitial model, 3

Kleene’s predicate Tn, 107
Kreisel-Putnam Principles, 58
Kripke

frame, 44
model, 44

Kuroda Principle, 53

logic
Grzegorczyck, 55
intuitionistic, 46
Kreisel-Putnam, 58
Kuroda, 53
Scott, 67

Lukasiewicz’s conjecture, 58

Markov Principle, 93
model

classical first order, 79
reachable, 80

natural deduction calculus, 12
NDINT, 12
NDCL, 14

INDEX 129

Normal Form Theorem, 102
normalization, 6
numeralwise expressible, 106

positively-, 108
strongly-, 105

numeralwise representable, 105
exhaustively-, 108
strongly-, 105

Parametrization (or Sm
n) Theorem, 103

Partial Reflection Principle, 113
power set, 9

Pow(X), 9
Powfin(X), 9

product axioms, 81
Projection Theorem, 103
proof

(over LA), 25
Hilbert calculus-, 11
natural deduction-, 13

proper parameters, 13
convention on -, 14

provability relation
bounded-, 24
determined by H, 22
`H, 22

recursive realizability, 1
relation

number theoretic-, 99
primitive recursive-, 100
r.e.-, 102
recursive-, 100
recursively enumerable-, 102

representation function, 33
result extracting function U, 107

Scott Principle, 67
sequent, 12

axiom-, 12
initial-, 12

sequent calculi
SEQINT, 17

strongly constructive
calculus, 40

formal system, 41
subproofs, 26

SubPr(π), 26
substitution

of individual variables, 9
of predicate variables, 44

successor axioms, 81
sum axioms, 81

uniform embedding, 34
φ
↪→, 34

uniform generalized R-subcalculus, 34
�, 34

uniform representation, 34
w.r.t. φ, 34

uniformly R-closed calculus, 34
uniformly equivalent calculi, 34
universal closure, 45

