
UNIVERSITÀ DEGLI STUDI DI MILANO

Dipartimento di Scienze dell’Informazione

RAPPORTO INTERNO N. 252-00

'

&

$

%

Extracting information from intermediate
T-systems

Mauro Ferrari Camillo Fiorentini Pierangelo Miglioli

This work has been presented at IMLA99: Intuitionistic Modal Logics and Application,
Trento, July 6, 1999.

Abstract

In this paper we will study the problem of uniformly extracting information from construc-
tive and semiconstructive calculi. We will define an information extraction mechanism
and will explain several examples of systems to which such a mechanism can be applied.
In particular, we will give as examples some families of effective subsystems of a wide
class of very large intermediate theories, we call T-systems. These large T-systems, even
if ineffective and semantically defined, provide a uniform and fruitful framework where
to analyze the possible combinations in a uniformly constructive context of mathematical
and super-intuitionistic logical principles.

Keywords: intermediate constructive systems, information extraction

Contents

1 Introduction . 1
2 Preliminaries . 2
3 Intermediate T-systems . 5

3.1 ADT as reachable isoinitial models 6
3.2 The T-systems Constr1(T) and Constr2(T) 8
3.3 The PA-systems Constr1(PA) and Constr2(PA) 13

4 The information extraction mechanism . 14
5 A wide family of uniformly constructive T-systems 18

5.1 Harrop Theories with cover set induction 18
5.2 Harrop Theories with Descending Chain Principle 22
5.3 Harrop Theories with Markov Principle 23
5.4 Further uniformly constructive calculi 24

6 Uniformly semiconstructive PA-systems 25
6.1 A uniformly semiconstructive PA-system included in Constr2(PA) 26
6.2 A uniformly semiconstructive PA-system included in Constr1(PA) 30

References . 32

1 Introduction

It is well known that formal proofs can be used for program synthesis and program
verification, and this essentially depends on the availability of an information extraction
mechanism allowing to capture in an uniform way the implicit algorithmic content of
a proof. As it is well known (see, e.g., [Goto, 1979; Martin-Löf, 1982]) such a uniform
mechanism can be defined for constructive calculi enjoining a Normalization Theorem or
a Cut-elimination Theorem; also suitable fragments of classical calculi can be considered
(see, e.g., [Murthy, 1990; Parigot, 1993]).

In this paper we will analyze two kinds of calculi from whose proofs the information
can be extracted in a uniform way. The first one corresponds to our definition of uni-
formly constructive calculus, which aims to characterize uniform extraction methods also
for constructive systems neither satisfying a Normalization Theorem nor a Cut-elimination
Theorem. The second one corresponds to our notion of uniformly semiconstructive cal-
culus, which intends to provide a general framework where to study the extraction of
information from classical proofs. In this way, considering also the notions of constructive
and semiconstructive calculus (which disregard uniformity properties), we can give an
accurate classification of important aspects related to a wide family of systems.

Here, we will focus our investigation on the notion of (intermediate) T-system, which
can be seen as an extension to non purely logical systems (i.e., systems involving math-
ematical theories) of the well known notion of intermediate logic [Avellone et al., 1996;
Ono, 1972] (see §3 for the formal definition). Intermediate T-systems (with T ranging in
the family of first order theories) have been only occasionally considered in literature; in
this paper we also aim to propose them with some systematic attitude, in particular as
concerns the constructive and semiconstructive T-systems, taking into account aspects
of maximality and effectiveness (the latter being intended as synonymous with “recursive
axiomatizability”).

Our notion of constructive T-system is based on the disjunction property (if a closed
wff A∨B belongs to the system, then either A or B belongs to the system) and the explicit
definability property (if a closed wff ∃xA(x) belongs to the system, then A(t) belongs to
the system for some closed term t of the language). On the other hand, we consider a
T-system S semiconstructive if it satisfies the weak disjunction property (if a closed wff
A ∨ B belongs to S either A or B belongs to the corresponding classical theory T⊕Cl)
and the weak explicit definability property (if a closed wff ∃xA(x) belongs to S then A(t)
belongs to the corresponding classical theory T⊕Cl for some closed term t).

According to our approach to program synthesis ([Avellone et al., 1999; Miglioli et al.,
1988; Miglioli et al., 1989; Miglioli et al., 1994]), the paper is also interested in providing a
significant basis to extract information from constructive T-systems specifying Abstract
Data Types. In this sense, if T is a theory completely formalizing an Abstract Data
Type (according to the characterization of Abstract Data Types based on the notion of
isoinitial model, see [Bertoni et al., 1983; Bertoni et al., 1993; Bertoni et al., 1984; Bertoni
et al., 1979; Miglioli et al., 1994]), the addition of T to a deductive apparatus L gives
rise to a recursively axiomatizable and semiconstructive (or constructive) formal system
S. Moreover, if a formula of the kind ∀x∃!yA(x, y) (respectively, a formula of the kind
∀x(B(x) ∨ ¬B(x))) can be proved in S, then the whole formal system can be used to
compute the function (respectively, the predicate) associated with such a formula (see,
e.g., [Bertoni et al., 1984; Miglioli et al., 1988; Miglioli et al., 1989; Miglioli et al., 1994]).

2. Preliminaries

But, if the formal system S does not satisfy further properties, the algorithm to compute
the function (the predicate) can be only based on an enumeration of the theorems of S;
hence it is highly inefficient. On the other hand, if a Normalization Theorem (or a Cut-
elimination Theorem) holds for S, then one can define a primitive-recursive computational
model allowing to directly interpret any proof of S as a program (this computational
model is described, e.g., in [Goto, 1979; Martin-Löf, 1982], and is known in literature as
proofs-as-programs paradigm).

A deeper discussion on the advantages and the limits of the computational model
involved in Normalization is out of the scope of this paper (for a more extensive discussion,
see [Miglioli and Ornaghi, 1981]). The aspect we want to point out here is that the
framework where the Normalization Theorems hold is too narrow, essentially coinciding
(disregarding the non-constructive classical systems) with a family of purely intuitionistic
calculi. In this sense, the assumption that the calculi enjoying Normalization (or Cut-
elimination) exhaust the family of the calculi whose proofs can be reasonably interpreted
as programs is quite reductive. Indeed, there is a great number of constructive and
semiconstructive calculi which are, according to us, quite reasonable candidates to be
included in this family, even if they cannot be reasonably seen as normalizable. Calculi
of this kind contain interesting mathematical and intermediate logical principles which
hardly can be handled in an attitude oriented to Normalization, even if they have, without
any doubt, a clear algorithmic content (see, e.g., [Avellone et al., 1999]).

Thus, one of our goals is to provide tools to significantly extend the field of appli-
cations of the traditional proof-theoretic techniques, yet providing a good paradigm of
proofs-as-programs both in the context of constructive formal systems and in the context
of semiconstructive formal systems.

The paper is organized as follows. In §2 we will introduce the basic definitions and
calculi we will use in the paper. In §3 we will discuss the fundamental notions of T-
system and theory completely formalizing an Abstract Data Type, also providing some
results of maximality and ineffectiveness. In §4 we will give the main results on our infor-
mation extraction mechanism, and the fundamental definitions of uniformly constructive
and semiconstructive calculus. Finally, in §5 and 6 we will present several examples of
uniformly constructive and semiconstructive calculi.

2 Preliminaries

A many sorted signature is any quadruple A = ⟨Sort,Const,Fun,Rel⟩, where: Sort is a
set of sort symbols, we denote by s, s1, sn, . . . ; Const is a set of constant declarations, of
the kind c : s, where c is a constant symbol and s is a sort symbol (the sort of c); Fun is
a set of function declarations, of the kind f : s → s′, where f is a function symbol, s is a
string of sort symbols (the arity of f) and s′ is a sort symbol (the sort of f); Rel is a set
of relation declarations of the kind r : s, where r is a relation symbol and s is a string of
sort symbols (the arity of r).

The set of terms and the set of well formed formulas (wff’s for short) of LA are built
up in the usual way, starting from A , a denumerable set V of sorted variables and the
logical constants ∧, ∨,→, ¬, ∀, ∃. The degree dg(A) of a wff A is defined in the usual
way.

The notions of free and bounded individual variable, of closed and open term and

2

Extracting information from intermediate T-systems

wff, and the notion of substitution are defined as usual. Notations such as A(x1, . . . , xn)
and t(x1, . . . , xn) (with n ≥ 1) will indicate that x1, . . . , xn may occur free in the wff A
and in the term t respectively, while FV(A) will indicate the set of all the free individual
variables occurring in the wff A. Given any substitution θ and any wff A (any term t),
we denote with θA (with θt) the expression obtained by (correctly) applying θ to the wff
A (to the term t). If Γ is a set of wff’s, θΓ will denote the set containing the wff θA for
any A ∈ Γ. Finally, if θ associates with every variable a closed term of the language, we
say that θA is a closed instance of A and that θ is a closed substitution.

An A -structure is, as usual, a structure M = ⟨M, ι⟩, where M = {Ms|s ∈ Sort} is a
Sort-indexed family of non-empty sets, called the carriers of the sorts of A , and ι is the
interpretation function. In M terms and wff’s are interpreted in the usual classical way
(see, e.g., [Chang and Keisler, 1973]).

Given a signature A we will call A -theory any recursively enumerable set of closed
wff’s of the language LA . Hereafter, we will always consider signatures and theories
satisfying the following properties:

(i) Any signature A contains at least a constant declaration c : s for every sort symbol
s of A ;

(ii) Any signature A contains a binary relation symbol (=s: s, s) for every sort symbol
s of A ;

(iii) Any A -theory axiomatizes the relation symbol (=s: s, s), for every sort symbol s of
A , as an identity relation;

(iv) T is classically consistent, that is, no wff of the form A ∧ ¬A is provable from T
using Classical Logic.

Finally, we present here a variant of the natural deduction calculi for Intuitionistic and
Classical Logic due to Gentzen [Gentzen, 1969] and Prawitz [Prawitz, 1965]. Here, the
logical alphabet does not include the connective ¬, that is ¬A is taken as an abbreviation
for A→⊥.

We call sequent an expression of the kind Γ ⊢ A, where A is a wff and Γ is a finite set
of wff’s. For the sake of simplicity, we use the following conventions: Γ,∆ ⊢ A abbreviates
Γ ∪∆ ⊢ A, A ⊢ B abbreviates {A} ⊢ B and ⊢ A abbreviates ∅ ⊢ A. Moreover, we call
initial sequent or axiom any sequent of the form A ⊢ A.

We will write Γ|
Int
A to indicate that a sequent Γ′ ⊢ A with Γ′ ⊆ Γ is provable using

the rules in Table 1. The natural deduction calculus N DCl for first-order Classical Logic
is obtained by replacing the rule ⊥Int of the calculus N DInt with the rule:

Γ,¬A ⊢ ⊥
Γ ⊢ A

⊥Cl

For the natural deduction calculi, the notions of proof (tree), end-sequent of a proof,
subproof of a proof, as well as the notion of depth of a proof π, denoted by depth(π), are
defined in the usual way (see, e.g., [Prawitz, 1965; Takeuti, 1975]).

The variable y in the rules I∀ and E∃ of Table 1 is called proper parameter of the rule.
We call free variable of a proof every variable which occurs free in some wff of the proof
and does not occur as a proper parameter in such a wff. It is well known that proper
parameters can always be chosen in such a way that:

3

2. Preliminaries

A ⊢ A
Id

Γ ⊢ A
Γ,∆ ⊢ A

W
Γ ⊢ ⊥
Γ ⊢ A

⊥Int
where A is an atomic
wff.

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A ∧B

I∧
Γ ⊢ A ∧B
Γ ⊢ A

E∧
Γ ⊢ A ∧B
Γ ⊢ B

E∧

Γ ⊢ A
Γ ⊢ A ∨B

I∨
Γ ⊢ B

Γ ⊢ A ∨B
I∨

Γ ⊢ A ∨B ∆, A ⊢ C Θ, B ⊢ C
Γ,∆,Θ ⊢ C

E∨

Γ, A ⊢ B
Γ ⊢ A→B

I→
Γ ⊢ A ∆ ⊢ A→B

Γ,∆ ⊢ B
E→

Γ ⊢ A(y/x)
Γ ⊢ ∀xA(x)

I∀
where y does not occur free
in Γ or ∀xA(x).

Γ ⊢ ∀xA(x)
Γ ⊢ A(t/x)

E∀

Γ ⊢ A(t/x)
Γ ⊢ ∃xA(x)

I∃
Γ ⊢ ∃xA(x) ∆, A(y/x) ⊢ C

Γ,∆ ⊢ C
E∃

where y does not occur free
in ∆, ∃xA(x) or C.

⊢ x = x
id1

Γ ⊢ A(t/x) ∆ ⊢ t = t′

Γ,∆ ⊢ A(t′/x)
id2

where A(x) is an atomic
wff.

Table 1: The calculus N DInt

(P1) Every proper parameter in a proof π is a proper parameter of exactly one rule;

(P2) The set of proper parameters is disjoint from the set of free variables of a proof.

For any proof satisfying Conditions (P1) and (P2), the tree-structure obtained by replac-
ing some of the free variables of the proof with terms is a well defined proof. We will write
π[t/x] to denote the proof obtained by substituting all the occurrences of the free variable
x in the proof π with the term t, and θπ to denote the proof obtained by applying the
substitution θ to π.

In the following we will define new calculi adding pseudo-natural deduction rules1 to
the above ones. Whenever we will introduce a rule with parameters, we will assume that
the above Conditions (P1) and (P2) hold for any proof of the resulting calculus.

Finally, given a theory T and a pseudo-natural deduction calculus N D , we will denote
with N D(T) the calculus obtained by adding the rule

⊢ H
T

to N D for any wff H belonging to T.

1We call pseudo-natural deduction rule any rule which does not meet the introduction/elimination
paradigm, which is typical of pure natural deduction calculi.

4

Extracting information from intermediate T-systems

3 Intermediate T-systems

Considering the (one sorted) language L of pure predicate calculus [Avellone et al., 1996;
Ono, 1972], Int and Cl will denote the set of intuitionistically valid wff’s of L and
classically valid wff’s of L respectively.

A (first-order) intermediate logic is any set of wff’s L such that:

(i) Int ⊆ L ⊆ Cl;

(ii) L is closed under modus ponens and generalization;

(iii) L is closed under predicate substitution (see, e.g., [Avellone et al., 1996; Ono, 1972]
for a formal definition).

An intermediate pseudo-logic is any set L of wff’s of L satisfying Conditions (i) and (ii),
but possibly not satisfying Condition (iii) above.

If Γ is a set of classically valid wff’s of L (axioms) and L is an intermediate logic,
the notation L+ Γ will indicate the smallest set of wff’s (which is an intermediate logic)
closed under modus ponens, generalization and predicate substitutions containing L and
the wff’s (axioms) of Γ. On the other hand, the notation L ⊕ Γ will denote the small-
est set of wff’s (which is an intermediate pseudo-logic) closed under modus ponens and
generalization containing L and the wff’s (axioms) of Γ. If Γ = {A} consists of a single
axiom, the notations L+A and L⊕A will replace L+ {A} and L⊕ {A} respectively.

Passing from the language L to the language LA generated by a many-sorted sig-
nature A (in the sense explained in §2, where the relation declarations of A are seen as
constant relation declarations, and hence predicate substitution are not allowed in LA),
one can easily define IntA and ClA : they are the subsets of LA obtained by (correctly,
i.e., without clashes) substituting the predicate variables (i.e., the atomic subformulas)
with wff’s of LA in the wff’s of Int and Cl respectively. In a similar way, if L is a
(first-order) intermediate logic (in the language L), one defines LA . On the other hand,
a pseudo-logic LA will be any set of wff’s of LA such that IntA ⊆ LA ⊆ ClA , and LA is
closed under modus ponens and generalization. When A (and hence LA) is understood,
we will still indicate IntA and ClA with Int and Cl; likewise for intermediate logics and
pseudo-logics.

In this framework, let T be any A -theory; we call (intermediate) T-system any set S
of wff’s of LA such that Int⊕T ⊆ S ⊆ Cl⊕T and S is closed under modus ponens and
generalization.

Now, let us introduce the notions of constructive and semiconstructive set of wff’s.
Let Γ be a set of wff’s of LA ; we say that Γ is constructive if it has the properties:

(Dp) : if A ∨B ∈ Γ and A ∨B is a closed wff, then either A ∈ Γ or B ∈ Γ;

(Ed) : if ∃xA(x) ∈ Γ and ∃xA(x) is a closed wff, then A(t/x) ∈ Γ for some closed
term t of the language.

(Dp) is called disjunction property while (Ed) is called explicit definability property.

Given Γ,∆ ⊆ LA such that Γ ⊆ ∆, we say that Γ is semiconstructive in ∆ iff the
following properties (wDp) and (wEd) hold:

(wDp): if A ∨B ∈ Γ and A ∨B is a closed wff, then either A ∈ ∆ or B ∈ ∆.

5

3. Intermediate T-systems

(wEd): if ∃xA(x) ∈ Γ and ∃xA(x) is a closed wff, then A(t/x) ∈ ∆ for some closed
term t of the language.

Given a T-system S, we simply say that it is semiconstructive if S is semiconstructive in
Cl⊕T.

In the following we will be interested in studying theories whose axioms belong to one
of the classes of wff’s defined below. Let H be any quantifier free wff.

- A ∀-wff is any wff of the kind ∀xH, where ∀x indicates a possibly empty list of ∀-
quantifiers.

- An ∃-wff is any wff of the kind ∃xH, where ∃x indicates a possibly empty list of
∃-quantifiers.

- A ∀∃-wff is any wff of the kind ∀x∃yH, where ∀x and ∃y indicate possibly empty lists
of the corresponding quantifiers.

- A ∀∃¬-wff is inductively so defined: every ∀∃-wff is a ∀∃¬-wff; every negated wff is
a ∀∃¬-wff; if A and B are ∀∃¬-wff’s and C is any wff, A ∧ B, C → A and ∀xA are
∀∃¬-wff’s.

- A ∀¬-wff is defined like a ∀∃¬-wff, but starting from ∀-wff’s and negated wff’s in place
of ∀∃-wff’s and negated wff’s.

- An Harrop-wff (see [Troelstra, 1973]) is inductively so defined: every atomic or negated
wff is an Harrop wff; if A and B are Harrop wff’s and C is any wff, then A ∧B, C→A
and ∀xA are Harrop wff’s.

We will call H -theory any theory T such that every wff A ∈ T is an H -wff, where H
is one of the notions defined above.

3.1 ADT as reachable isoinitial models

In this section we give the main definitions and results needed to introduce the formal-
ization of Abstract Data Types (ADT’s for short) as reachable isoinitial models.

Given two A -structures A and B we say that an homomorphism ψ : A → B is an
isomorphic embedding iff A is isomorphic to the homomorphic image of ψ in B (see [Chang
and Keisler, 1973] for a detailed definition of these notions). Let T be an A -theory; a
model I of T is isoinitial iff, for every model M of T, there exists a unique isomorphic
embedding ψ : I→ M.

The formalization of ADT’s we will use here is based on the notion of isoinitial model.
In literature there is another well known model theoretic notion which has been used
to formalize ADT’s, namely that of initial model, where a model K of a theory T is
initial iff, for every model M of T, there exists a unique homomorphism ψ : K → M.
For a detailed discussion on the approach based on initial models we refer the reader
to [Wirsing, 1990], while, for a detailed discussion on the approach based on isoinitial
models and for an extensive comparison between the two approaches, we refer the reader
to [Bertoni et al., 1983; Bertoni et al., 1993; Bertoni et al., 1984; Bertoni et al., 1979;
Miglioli et al., 1994]. It is worth mentioning that, in the full first order frame, there are
theories without initial and isoinitial models. Comparing the two notions, we have that
both capture “abstractness”, in the paradigmatic sense of the literature on ADT’s; that

6

Extracting information from intermediate T-systems

is, an isoinitial model (respectively, an initial model) of a first order theory T (if it exists)
is unique up to isomorphisms.

According to the quoted literature, the characterization of an ADT as an isoinitial
model seems to be well justified on the theoretical ground. In this line, we give the
following definitions:

Definition 3.1 Given an A -theory T we say that:

(i) T formalizes and ADT I iff I is an isoinitial model of T.

(ii) T completely formalizes an ADT I iff I is a reachable isoinitial model of T.

We recall that an A -structure M is reachable iff, for every sort s, all the elements of its
carrier are denoted by closed terms of the language LA . We also recall (as explained,
e.g., in [Miglioli et al., 1994]) that any theory T formalizing an ADT I can be extended
(with the addition of a recursive set of new constants and a recursive set of definitional
axioms) into a theory T′ completely formalizing an ADT I′ which is an expansion (up to
the new language) of of I.

Now, we say that an A -theory T is atomically complete iff A ∈ Cl⊕T or ¬A ∈ Cl⊕T
for every closed atomic wff A of LA . The following theorem, whose proof is implicitly
given in [Bertoni et al., 1984; Miglioli et al., 1994], provides a useful criterion to study
isoinitiality.

Theorem 3.2 An A -theory T completely formalizes an ADT iff T has a reachable model
and is atomically complete. 2

Since the usual theory PA of Arithmetic is atomically complete and the standard
model N of PA is reachable (in the language of PA), the previous theorem allows to
assert that PA completely formalizes an ADT.

Theorem 3.2 also allows to prove that, for every set C of constant symbols and function
symbols, the term-algebra generated by C is an isoinitial model for the theory T(C)
containing the identity theory of C and the injectivity axioms of C ; in this framework,
also induction principles can be added (see [Miglioli et al., 1994]). The injectivity axioms
state that different closed terms represent different elements in every model. Identity and
injectivity are sufficient to obtain the isoinitiality result, but it is useful to introduce also
various induction principles in order to get a powerful T-system.

Now, let us denote with IKa the intermediate pseudo-logic Int⊕ (Kur)⊕ (At), where
(At) and (Kur) are the following principles (namely, sets of wff’s having the form indicated
below):

(At) ¬¬A→A with A an atomic wff

(Kur) ∀x¬¬A(x)→¬¬∀xA(x)

Moreover, given a signature A and a relation declaration r : s in A , the canonical
constraint associated with r : s, denoted by cc(r : s), is the wff ∀x(r(x) ∨ ¬r(x)). Given
an A -theory T, by the canonical extension of T, denoted by cc(T), we mean the theory
T ∪ {cc(r : s)| r : s ∈ A }.

Using Theorem 3.2, we can prove the following sufficient condition for an A -theory
T to completely formalize an ADT (see [Miglioli et al., 1994]):

7

3. Intermediate T-systems

Theorem 3.3 Let T and L be respectively an A -theory and a pseudo-logic such that:

1. T has a reachable model;

2. L⊕T is semiconstructive;

3. For every relation declaration r : s in A , cc(r : s) ∈ L⊕T.

Then T completely formalizes an ADT. 2

The above sufficient condition can be made a necessary and sufficient one for ∀∃¬-
theories, i.e. theories T containing only ∀∃¬-wff’s; to do so we need the following theorem
(see [Miglioli et al., 1994]):

Theorem 3.4 Let T be any atomically complete ∀∃¬-theory with a reachable model.
Then IKa⊕T is constructive. 2

At this point, to get our necessary and sufficient condition, we have to take into
account the canonical constraints of T. Of course, these wff’s are quite irrelevant from
the classical point of view, i.e., T and cc(T) are classically equivalent and, since the new
axioms of cc(T) do not affect the class of models of T, T completely formalizes an ADT
iff cc(T) does. On the other hand, they are quite relevant from a constructive point of
view. Indeed, any canonical constraint cc(r : s) is a ∀-wff, hence a ∀∃¬-wff; thus, we
can combine Theorem’s 3.3 and 3.4 and state, in “purely constructive terms”, the desired
necessary and sufficient condition:

Theorem 3.5 Let T be any ∀∃¬-theory. Then T completely formalizes an ADT iff the
following conditions are satisfied:

1. T has a reachable model;

2. IKa⊕ cc(T) is constructive. 2

3.2 The T-systems Constr1(T) and Constr2(T)

Here, we explain the two constructive frameworks within which we will develop our further
treatment, i.e., the T-systems Constr1(T) and Constr2(T). They are two very large
families of constructive T-systems (depending on T) which, as we will see, are quite non
effective (i.e., in general they are far from being recursively enumerable). Nevertheless,
we believe, they are interesting for various reasons, among which the two following ones.
First of all, they can be seen as a kind of semantical tool to single out superintuitionistic
logical principles immediately giving rise (if added to T-systems of the form Int ⊕ T)
to semiconstructive T-systems, to be successively investigated in order to check whether
they are uniformly constructive or uniformly semiconstructive. In this sense, they contain
almost all the constructive superintuitionistic principles taken into account in literature
(e.g., the principles (Mk), (Kur), (KP∨), (KP∃), (St) of Table 2), and some new superin-
tuitionistic principles (e.g., the principles (wGrz), (St∃), and (DT) of Table 2). Secondly,
the counterposition between Constr1(T) and Constr2(T) accounts for the most known
facts of constructive incompatibility of superintuitionistic constructive principles. Indeed,
principles whose simultaneous addition to intuitionistic systems is known to give rise to

8

Extracting information from intermediate T-systems

non constructive (even to non semiconstructive) systems (e.g., (Mk) and (KP∃)) are sep-
arated by the (maximal constructive) T-system Constr1(T) and the (very large, perhaps
maximal constructive) T-system Constr2(T).

Other very large (families of) constructive T-systems (among which, provably max-
imal constructive ones) might be presented, which we omit for the sake of brevity. We
have chosen Constr1(T) and Constr2(T) since, we believe, they have a great “heuristic
content”, i.e., they can be seen as a “kind of semantics” allowing to find, in a reason-
ably simple way, new interesting superintuitionistic principles. From this point of view,
perhaps the reader will find connections between the semantics involved in Constr2(T)
(which is inspired by the original semantics of Medvedev Logic [Medvedev, 1963]) and
some variants of the realizability semantics introduced in the traditional studies on the
foundations of constructive mathematics (see, e.g., [Troelstra, 1973]). However, differently
from that tradition, we are not interested in calculi which (even if consistent) violate the
requirements involved in classical consistency. Thus, our constructive T-systems (and the
related principles) in general are not recursively realizable (according to the most typical
notions of realizability such as Kleene’s 1945-realizability [Kleene, 1952]). In particular, in
our attitude a principle of Table 2 such as (Kur) may assume a great importance, even if it
is not realized by paradigmatic notions of realizability such as Kleene’s one [Kleene, 1952].

Let T be an A -theory; we say that a wff A is constructively sound in T iff:

(i) A ∈ Cl⊕T;

(ii) For every closed instance θA of A, one of the following conditions holds:

(a) θA is atomic or negated;

(b) θA ≡ B ∧ C, and both B and C are constructively sound in T;

(c) θA ≡ B ∨ C, and either B is constructively sound in T or C is constructively
sound in T;

(d) θA ≡ B→C, and, if B is constructively sound in T, then C is constructively
sound in T;

(e) θA ≡ ∃xB(x), and there exists a closed term t such that B(t) is constructively
sound in T;

(f) θA ≡ ∀xB(x), and, for every closed term t, B(t) is constructively sound in T.

Let us define the set

Constr1(T) = {A : A is constructively sound in T}.

Then, if T ⊆ Constr1(T), Constr1(T) is a maximal constructive and a maximal semi-
constructive T-system, in the sense of the following theorem.

Theorem 3.6 Let T be an A -theory such that T ⊆ Constr1(T). Then:

1. Constr1(T) is a constructive T-system.

2. For every semiconstructive T-system S ⊇ Constr1(T), it holds that S = Constr1(T).

9

3. Intermediate T-systems

Proof: (1) Clearly Constr1(T) ⊆ Cl⊕T. In order to prove that Int⊕T ⊆ Constr1(T),
it suffices to show (by induction on the structure of the proofs) that, for every proof
π : Γ ⊢ A in N DInt, if Γ ⊆ Constr1(T), then A ∈ Constr1(T). The closure of
Constr1(T) with respect to modus ponens, generalization, (Dp) and (Ed) is immediate.

(2) If T is a classically complete theory (i.e., H ∈ Cl⊕T or ¬H ∈ Cl⊕T for every
closed wff H ∈ LA) and T has a reachable model, then it is not difficult to show that
Constr1(T) = Cl⊕T, hence the assertion. Now, let us suppose that T is not classically
complete Constr1(T) ⊆ S, Constr1(T) ̸= S, and S is semiconstructive. Moreover, let H
be some closed wff’s such that H ∈ S but H ̸∈ Constr1(T). Since the principle (DT) of
Table 2 is in Constr1(T), we have that for every K ∈ LA , H→K ∨¬K ∈ Constr1(T),
which implies H→K ∨ ¬K ∈ S, which implies (by modus ponens) K ∨ ¬K ∈ S. Taking
K such that K ̸∈ Cl ⊕ T and ¬K ̸∈ Cl ⊕ T, this gives rise to a contradiction. Finally,
suppose that T has no reachable model. Then one easily shows that there is ∃xA(x) ∈
LA such that ¬∃xA(x) ̸∈ Cl ⊕ T and, for every closed term t of LA , A(t) ̸∈ Cl ⊕ T
(while ∃xA(x) ∈ Cl ⊕ T if T is classically complete). Suppose that Constr1(T) ⊆ S,
Constr1(T) ̸= S, and S is semiconstructive. Then (arguing as in the previous case)
∃xA(x) ∈ S, which implies that A(t) ∈ Cl⊕T for some t, a contradiction. 2

Among the principles constructively sound (apart from (At) which is not closed under
arbitrary substitution), we can mention Kuroda Principle (Kur), Markov Principle (Mk)
(provided T has a reachable model), Weak Grzegorczyk Principle (wGrz), Scott Principle
(St), Extended Scott Principle (St∃) and the principle (DT) of Table 2. On the other
hand, in general Kreisel-Putnam Principle (KP∨) and its predicative extension (KP∃)
(also known with the name (IP), [Troelstra, 1973]) are not constructively sound (but the
latter fact does not hold if T is a complete theory with a reachable model).

(At) ¬¬H→H with H an atomic wff

(Kur) ∀x¬¬A(x)→¬¬∀xA(x)
(KP∨) (¬A→B ∨ C)→(¬A→B) ∨ (¬A→C)

(KP∃) (¬A→∃xB(x))→∃x(¬A→B(x)) with x ̸∈ FV(A)

(Mk) ∀x(A(x) ∨ ¬A(x)) ∧ ¬¬∃xA(x)→∃xA(x)
(wGrz) ∀x¬¬A(x) ∧ ∀x(A(x) ∨B)→∀xA(x) ∨B with x ̸∈ FV(B)

(St) ((¬¬A→A)→A ∨ ¬A)→(¬A ∨ ¬¬A)
(St∃) (∀x(¬¬A(x)→A(x))→∃x(A(x) ∨ ¬A(x)))→∃x(¬A(x) ∨ ¬¬A(x))
(DT) ∃xA(x) ∨ ∀x(A(x)→B ∨ ¬B)

Table 2: Some intermediate principles

It seems to be hard to completely characterize the theoriesT such thatT ⊆ Constr1(T);
nevertheless, we can describe wide families of wff’s which are constructively sound in any
theory to which they belong.

10

Extracting information from intermediate T-systems

Theorem 3.7 Let T be an A -theory and let H be a closed wff such that H ∈ Cl ⊕ T.
Then H ∈ Constr1(T) if one of the following conditions holds:

1. H is an Harrop-wff;

2. H is a ∀¬-wff and T is atomically complete;

3. H is a ∀∃¬-wff, T is atomically complete and T has a reachable model. 2

We now introduce another kind of semantics allowing to define constructiveT-systems.
Let A be any closed wff; we define the set Ef(A) of the evaluation forms Â of A, by
induction on the structure of A.

(a) Ef(A) = {A} if A is either atomic or negated;

(b) Ef(B ∧ C) = {⟨B̂, Ĉ⟩ : B̂ ∈ Ef(B) and Ĉ ∈ Ef(C)};

(c) Ef(B ∨ C) = {⟨B̂, 0⟩ : B̂ ∈ Ef(B)} ∪ {⟨Ĉ, 1⟩ : Ĉ ∈ Ef(C)};

(d) Ef(B→C) = {f : f is a function and f : Ef(B)→Ef(C)};

(e) Ef(∃xB(x)) = {⟨t, ˆB(t)⟩ : t is a closed term and ˆB(t) ∈ Ef(B(t))};

(f) Ef(∀xB(x)) = {f : f is a function associating, with every closed term t, an
element of Ef(B(t))}.

Let M be any model of T and let Â ∈ Ef(A). We say that Â holds in M, and we write
M |= Â, if one of the following inductive conditions is satisfied:

(1) Â is either an atomic or negated wff A and M |= A.

(2) Â ≡ ⟨B̂, Ĉ⟩ ∈ Ef(B ∧ C), and M |= B̂ and M |= Ĉ.

(3) Â ≡ ⟨B̂, 0⟩ ∈ Ef(B ∨ C), and M |= B̂.

(4) Â ≡ ⟨Ĉ, 1⟩ ∈ Ef(B ∨ C), and M |= Ĉ.

(5) Â ≡ f ∈ Ef(B→C), and both the following conditions hold:

(i). M |= B→C;

(ii). for every B̂ ∈ Ef(B), M |= B̂ implies M |= f(B̂).

(6) Â ≡ ⟨t, ˆB(t)⟩ ∈ Ef(∃xB(x)), and M |= ˆB(t).

(7) Â ≡ f ∈ Ef(∀xB(x)), and both the following conditions hold:

(i). M |= ∀xB(x);

(ii). for every closed term t, M |= f(t).

11

3. Intermediate T-systems

Note that, if M |= Â for some Â ∈ Ef(A), then M |= A, while the converse needs not to
be true.

Let A be any closed wff and let Â ∈ Ef(A); we say that T |= Â iff, for every model M
of T, it holds that M |= Â. Given a wff A, we denote with ∀A the universal closure of A.
We define

Constr2(T) = {A : T |= ∀̂A for some ∀̂A ∈ Ef(∀A)}.

We can prove:

Theorem 3.8 Let T be an A -theory such that T ⊆ Constr2(T). Then Constr2(T) is
a constructive T-system.

Proof: Let π : Γ ⊢ A be a proof in N DInt and suppose that Γ ⊆ Constr2(T); then, by
induction on the structure of π, one can prove that A ∈ Constr2(T). As a consequence,
it holds that Int⊕T ⊆ Constr2(T); moreover, since A ∈ Constr2(T) implies T |= A, by
the Completeness Theorem of Classical Logic we also have A ∈ Cl⊕T. The constructive
properties are immediately satisfied. 2

We are not able to state (for any theory T ⊆ Constr2(T)) whether Constr2(T) is
a maximal constructive T-system or not. However, we can prove that, for every T, the
principles (Kur), (wGrz), (KP∨) and (KP∃) of Table 2 belong to Constr2(T) (Also (At)
belongs to Constr2(T)). On the other hand, in general (Mk) and the principles (St),
(St∃) and (DT) (again, see Table 2) do not belong to Constr2(T). The latter fact does
not hold if T is a complete theory with a reachable model, in which case also Grzegorczyk
Principle

(Grz) ∀x(A(x) ∨B)→∀xA(x) ∨B with x ̸∈ FV(B)

belongs both to Constr1(T) and Constr2(T); we remark, however, that in general (Grz)
belongs neither to Constr1(T) nor to Constr2(T), since, e.g., the addition of (Grz) to
Intuitionistic Arithmetic gives rise to Classical Arithmetic [Troelstra, 1973]. Thus, in
general one has that Constr1(T) ̸⊆ Constr2(T) and Constr2(T) ̸⊆ Constr1(T). We
point out, on the other hand, that the difference between Constr1(T) and Constr2(T)
collapses for particular theories: for instance, one can prove that, if T is a classically
complete theory with a reachable model, then Constr1(T) = Constr2(T) = Cl⊕T.

The following result states sufficient conditions for a theory T to be contained in
Constr2(T).

Theorem 3.9 Let T be an A -theory and let H be a closed wff such that H ∈ Cl ⊕ T.
Then H ∈ Constr2(T) if one of the following conditions holds:

1. H is an Harrop-wff;

2. H is a ∀¬-wff and T is atomically complete;

3. H is a ∀∃-wff, T is atomically complete and T has a reachable model. 2

12

Extracting information from intermediate T-systems

3.3 The PA-systems Constr1(PA) and Constr2(PA)

Let LPA be the language of first-order Arithmetic, containing the constant symbol 0, the
unary function symbol S, the binary function symbols + and ∗ and the binary relation
symbol =, and let PA be the usual axiomatization of Arithmetic. We will denote with
AInt and ACl the PA-systems Int⊕PA and Cl⊕PA respectively. Also, N will denote
the standard (classical) model of PA.

According to Theorems 3.7 and 3.9, all the Harrop axioms ofPA belong toConstr1(PA)
and to Constr2(PA). Since the remaining axioms of PA are instances of the Induction
Principle (see also §6), which are easily shown to belong both to Constr1(PA) and
Constr2(PA), we get:

Theorem 3.10 AInt ⊆ Constr1(PA) and AInt ⊆ Constr2(PA). 2

We already know that Constr1(PA) is a maximal semiconstructive PA-system, in
the next theorem we prove that Constr1(PA) is not an effective system.

Theorem 3.11 Constr1(PA) is not arithmetical.

Proof: We prove that the arithmetical truth can be decided by an oracle for membership
in Constr1(PA). Let A be any closed wff of LPA; by a standard effective procedure, we
can define a wffM(x1, . . . , xn) in disjunctive normal form such thatQ1x1 . . . QnxnM(x1, . . . , xn)
is classically equivalent to A, where, for 1 ≤ j ≤ n, Qj is one of the quantifiers ∃, ∀. By
Gödel Incompleteness Theorem, there is a closed wffG such thatG ̸∈ ACl and ¬G ̸∈ ACl;
let us define:

H(x1, . . . , xn) ≡ (M(x1, . . . , xn) ∨G) ∨ ¬(M(x1, . . . , xn) ∨G).

We firstly observe that, for every n-tuple t of closed terms t1, . . . , tn, the following fact
holds:

(1) H(t) ∈ Constr1(PA) implies N |=M(t).

Indeed, suppose that H(t) ∈ Constr1(PA); since ¬(M(t) ∨ G) ̸∈ Constr1(PA) (other-
wise ¬G ∈ ACl would follow) and G ̸∈ Constr1(PA), necessarily M(t) ∈ Constr1(PA).

Let HA be the closed wff Q1x1 . . . QnxnH(x1, . . . , xn); by induction on n, one can
prove that:

(2) HA ∈ Constr1(PA) iff N |= A.

Suppose, for instance, that n = 1 and Q1 = ∀, that is A is classically equivalent to
∀x1M(x1) andHA ≡ ∀x1H(x1). If ∀x1H(x1) ∈ Constr1(PA), thenH(t) ∈ Constr1(PA)
for every closed term t. By (1), N |= M(t) for every closed term t; since N is reachable,
we can assert that N |= ∀x1M(x1), hence N |= A. Conversely, let us assume that N |= A,
that is N |= ∀x1M(x1), and let t be any closed term. Then N |=M(t) and, since M(t) is
quantifier free, M(t) ∈ AInt, which implies H(t) ∈ AInt. Since AInt ⊆ Constr1(PA),
it follows that H(t) ∈ Constr1(PA) for every closed term t; moreover, ∀x1H(x1) ∈ ACl.
Therefore ∀x1H(x1) ∈ Constr1(PA).

By (2), we can conclude that the degree of unsolvability of Constr1(PA) is greater
than or equal to the non arithmetical set of the closed wff’s of LPA which are true in the
standard model of PA. 2

13

4. The information extraction mechanism

As previously said, we do not know whether Constr2(PA) is a maximal constructive
PA-system (hence, we do not know whether it is a maximal semiconstructive PA-system).
However, following the same idea of the proof of Theorem 3.11 (and using the same wff’s
H(x1, . . . , xn), even if the argument is slightly more complex) we can state:

Theorem 3.12 Constr2(PA) is not arithmetical. 2

As previously said, we can define other interesting and very large PA-systems (some
of which, like Constr1(PA), are maximal constructive). However, all these systems turn
out to be non arithmetical. We wish to point out that considering Pressburger Arithmetic
PRA (i.e., the classically complete arithmetical theory of successor and sum, which has
a reachable model [Kleene, 1952]) we have that Constr1(PRA) = Constr2(PRA) =
Cl⊕PRA, thus Constr1(PRA) and Constr2(PRA) turn out to coincide and to be re-
cursive. Hence, passing from PRA to its conservative extension (with respect to classical
deduction) PA, we pass from recursive sets such as Constr1(PRA) to non arithmetical
sets such as Constr1(PA).

Remark 3.13 Even if they are quite undecidable (and, moreover, non recursively realizable ac-
cording to the various notions proposed by the constructive tradition, where also to check recursive
realizabilities is undecidable), Constr1(PA) and Constr2(PA) are rather significant from of the
point of view of the Theory of the Recursive Functions. Indeed, every semiconstructive PA-
system S (even if S, differently from Constr1(PA) and Constr2(PA), may be non constructive)
has remarkable properties such as the following:

(1) If, for some A(x1, . . . , xn), ∀x1 . . .∀xn∃!yA(x1, . . . , xn, y) ∈ S, then the underlying function
from Nn to N (N the set of natural numbers) is recursive;

(2) If, for some B(x1, . . . , xn), ∀x1 . . . ∀xn(B(x1, . . . , xn) ∨ ¬B(x1, . . . , xn)) ∈ S, then the under-
lying relation on Nn is recursive.

As a matter of fact, the function and the relation involved in (1) and (2) can be computed by a
recursive enumeration of the recursively enumerable set of the closed wff’s of ACl.

Thus, so to say, we may look at Constr1(PA) and Constr2(PA) as “very great but non
effective sets of descriptions of effective functions and relations”.

4 The information extraction mechanism

In this section we will provide a short presentation of our mechanism to extract informa-
tion from proofs, giving only the main definitions and results; for a complete discussion
and a detailed presentation of all the results we refer the reader to [Ferrari, 1997; Ferrari
et al., 1999]. We remark that, even if in this paper all the systems are presented by means
of pseudo-natural deduction systems, the extraction mechanism is based on an abstract
definition of a calculus allowing to treat also extraction from Gentzen-style, Tableau-style
or Hilbert-style calculi.

First of all we define a proof on a language LA as any finite object π such that:

(π1) The (finite) set of wff’s of LA occurring in π is uniquely determined and nonempty;

(π2) The sequent Γ ⊢ ∆ proved by π is uniquely determined, where Γ and ∆ are finite
sets of wff’s of LA . Γ (possibly empty) is the set of assumptions of π while ∆,
which must be nonempty, is the set of consequences of π.

14

Extracting information from intermediate T-systems

Proofs are characterized by the following attributes: Seq(π) indicates the sequent Γ ⊢ ∆
proved by π, Wffs(π) denotes the set of wff’s of LA occurring in π, and

dg(π) = max{dg(A) : A ∈ Wffs(π)}

is the degree of the proof π. The compact notation

π : Γ ⊢ ∆

will be used to indicate that Seq(π) = Γ ⊢ ∆.

A calculus on LA is a pair C = (C, [·]), where C is a recursive set of proofs on the
language LA and [·] is a recursive map from C into the set of finite subsets of C with the
following properties:

(C1) π ∈ [π];

(C2) For every π′ ∈ [π], [π′] ⊆ [π];

(C3) For every π′ ∈ [π], dg(π′) ≤ dg(π).

The map [·] associates with every proof of the calculus the set of its subproofs. We remark
that conditions (C2) and (C3) are natural: the former requires that the set of subproofs
of a proof also contains the subproofs of its elements; the latter requires that the degree
of the subproofs of a proof must not exceed the degree of the proof.

In the following, to simplify the notation, we will identify a calculus C with the set
of its proofs. Now, given a set of proofs Π ⊆ C, we denote with [Π] the closure under
subproofs of Π in the calculus C. Namely,

[Π] = {π′ : there exists π ∈ Π such that π′ ∈ [π]}.

In general, [Π] is not a recursive set of proofs. If Π is finite then, of course, [Π] is recursive,
and hence ([Π], [·]↾[Π]) is a calculus, where [·]↾[Π] is the restriction of [·] to [Π].

Given a calculus C, let Π ⊆ C; we define the following attributes of Π:

Seq(Π) : it is the set of all the sequents proved in Π, i.e. Seq(Π) = ∪π∈ΠSeq(π).

dg(Π) : it is the degree of Π, i.e. dg(Π) = max{dg(π) : π ∈ Π}, where dg(Π) = ∞ if Π
contains proofs of any complexity.

Theo(Π) : it is the set of theorems proved in Π, i.e. Theo(Π) = {A : ⊢ A ∈ Seq(Π)}.

Given two sets of proofs Π1 and Π2 on the same language LA , but possibly belonging
to different calculi, we write Π1 ≈ Π2 iff Seq(Π1) = Seq(Π2).

In the following we will be interested in characterizing subsets of a calculus which
have some closure properties. To this aim we introduce the notion of generalized rule:

Definition 4.1 (Generalized rule) Given a language LA , let Ξ be the set of all the
sequents in LA and let Ξ∗ be the set of all the finite sequences of sequents in Ξ. A
generalized rule (on LA) is a relation R ⊆ Ξ∗ × Ξ.

15

4. The information extraction mechanism

We denote with ϵ the empty sequence of sequents. Let σ∗ be an element of Ξ∗; we will
write σ ∈ R(σ∗) as a shorthand for (σ∗, σ) ∈ R. The domain of R is the set

dom(R) = {σ∗ ∈ Ξ∗ : there exists σ such that σ ∈ R(σ∗)}.

A set of sequents Σ is R-closed iff, for every σ, σ1, . . . , σn ∈ Ξ, if σ ∈ R(σ1; . . . ;σn)
and σ1, . . . , σn ∈ Σ then σ ∈ Σ. Obviously, a set of proofs (on LA) is R-closed iff Seq(Π)
is R-closed.

Examples of generalized rules we will use in the following are:

Substitution rule (Subst).
The domain of Subst is the set of all the sequents, and, for every substitution θ of
terms for individual variables, θΓ ⊢ θ∆ ∈ Subst(Γ ⊢ ∆).

Intuitionistic Cut rule (Cut).
The domain of Cut contains all the sequences of sequents which have the form
Γ1 ⊢ H; Γ2, H ⊢ A, and Γ1,Γ2 ⊢ A ∈ Cut(Γ1 ⊢ H; Γ2,H ⊢ A).

It is immediate to check that any pseudo-natural deduction calculus including N DInt is
Cut-closed and Subst-closed.

Definition 4.2 Let R be a generalized rule on LA and let C be a calculus on LA .

(i) A set Π of proofs of C is a R-subcalculus of C if Π is R-closed;

(ii) A set of proofs Π (possibly not belonging to C) is a generalized R-subcalculus of C
if there is a R-subcalculus Π′ of C such that Π ≈ Π′.

The notion of generalized R-subcalculus allows us to work also outside a given calculus
C taking sets of proofs equivalent (in the sense of ≈) to R-subcalculi of C. We will be
particularly interested in generalized R-subcalculi which are themselves calculi. In this
perspective, we introduce the following notion of abstract calculus to be subsequently used
as the key tool to extract information from proofs.

Let R be a generalized rule on LA and let Σ be any set of sequents in the same
language. The deductive sequent-system D(R,Σ) is the set of proof-trees inductively
defined as follows:

(i) If σ ∈ Σ, then τ ≡ σ is a proof-tree of D(R,Σ) with root σ and depth(τ) = 1.

(ii) If τ1 : σ1, . . . , τn : σn are proof-trees of D(R,Σ) (where σi is the root of τi) then, for
every σ ∈ R(σ1; . . . ;σn), the proof-tree

τ ≡
τ1 : σ1 . . . τn : σn

σ
R

with root σ belongs to D(R,Σ) and depth(τ) = max{depth(τ1), . . . , depth(τn)}+1.

We remark that, if both R and Σ are recursive, then D(R,Σ) is a calculus, where we
consider the obvious function [·] determined by the inductive definition of D(R,Σ).

The calculus D(R,Σ) allows us to recover the meaning of the generalized rules as
inference rules, but abstracting from the particular inference system generating Σ.

In [Ferrari, 1997; Ferrari et al., 1999] the following important properties of abstract
calculi are stated:

16

Extracting information from intermediate T-systems

Theorem 4.3 Let R be a generalized rule and let C be a R-closed calculus.

1. If Π is a R-subcalculus of C, then Π ≈ D(R, Seq(Π));

2. If Π ⊆ C, then D(R, Seq(Π)) is a generalized R-subcalculus of C. 2

Let R be a generalized rule on LA , let C be a calculus on LA and let ϕ be a function
over natural numbers. C is uniformly R-closed (w.r.t. ϕ) if C is R-closed, and, for every
π1 : σ1, . . . , πn : σn ∈ C, if σ ∈ R(σ1; . . . ;σn), then there exists a proof π : σ ∈ C with

dg(π) ≤ max {dg(π1), . . . , dg(πn), ϕ(dg(σ1)), . . . , ϕ(dg(σn)), ϕ(dg(σ))} .

As an example, the natural deduction calculus N DInt is uniformly Cut-closed (w.r.t.
ϕ(x) = x+1). As a matter of fact, starting from the proofs π1 : Γ ⊢ H and π2 : ∆,H ⊢ A,
we can build the proof π : Γ,∆ ⊢ A as follows:

π1 : Γ ⊢ H
π2 : ∆, H ⊢ A
∆ ⊢ H→A

I→

Γ,∆ ⊢ A
E→

and dg(π) = max{dg(π1), dg(π2), dg(∆, H ⊢ A) + 1}.
A generalized rule R is non-increasing iff the following conditions hold:

(i) For every σ1, . . . , σn ∈ dom(R) with n > 0, if σ ∈ R(σ1; . . . ;σn), then

dg(σ) ≤ max{dg(σ1), . . . , dg(σn)};

(ii) There exists a positive integer k such that, for every σ ∈ R(ϵ), dg(σ) ≤ k (we say
that R is k-bounded if k is the minimum integer for which this condition holds).

The use of non-increasing generalized rules to extract information from sets of proofs
with bounded degree (e.g., finite sets of proofs) belonging to some calculus C guarantees
that also the extracted sequents can be proved in C within a bounded degree, as it is
stated by the following theorem:

Theorem 4.4 Let R be a non-increasing (k-bounded) generalized rule on LA , and let C
be a calculus on LA which is uniformly R-closed (w.r.t. some ϕ). If Π ⊆ C and dg(Π) ≤
kΠ for some kΠ > 0, then there exists h ∈ N such that, for every σ ∈ Seq(D(R, Seq(Π))),
there exists π : σ ∈ C such that dg(π) ≤ h. 2

Now, we have all the ingredients needed to give the fundamental definitions of uni-
formly constructive and semiconstructive calculus.

Definition 4.5 (Uniformly constructive calculi) Let C be a calculus on LA . C is
uniformly constructive iff there exists a non-increasing generalized rule R such that:

(i) C is uniformly R-closed;

(ii) For every Π ⊆ C, Theo(D(R, Seq([Π]))) is constructive.

Definition 4.6 (Uniformly semiconstructive calculi) Let C and C′ be two calculi
on the same language LA . C is uniformly semiconstructive in C′ iff there exists a non-
increasing generalized rule R such that:

17

5. A wide family of uniformly constructive T-systems

(i) C′ is uniformly R-closed;

(ii) For every set Π of proofs of C, Seq([Π]) ⊆ Seq(C′) and Theo([Π]) is semiconstructive
in Theo(D(R, Seq([Π]))).

5 A wide family of uniformly constructive T-systems

In this section we will consider a wide family of theories which are interesting in the area
of program synthesis with Abstract Data Types (see, e.g., [Avellone et al., 1999; Miglioli
et al., 1994]) and give rise to uniformly constructive calculi. First of all, we will consider
arbitrary Harrop theories with a Generalized Induction Principle. Then we will study
Harrop theories with a Descending Chain Principle and Harrop theories with Markov
Principle. Finally, we will briefly discuss how these results can be extended to T-systems
including further principles of Table 2.

5.1 Harrop Theories with cover set induction

Given a signature A and an A -theory T, we say that T admits a cover set if there exists
a finite set C of terms of LA such that:

(i) No term of C is a variable;

(ii) For every closed term t of LA , there is a term t′ ∈ C such that T|
Int
t = θt′, for

some closed substitution θ.

Given a cover set C = {t1, . . . , tn} for T, we associate with it the following Cover Set
Induction Rule:

Γ,∆1 ⊢ A(t1) . . . Γ,∆n ⊢ A(tn)

Γ ⊢ A(x)
C -Ind

where, for 1 ≤ i ≤ n, if ti contains ki variables y
i
1, . . . , y

i
ki
, then ∆i is {A(yi1), . . . , A(yiki)};

if ki = 0 then ∆i is empty. The variables yi1, . . . , y
i
ki

are called proper parameters of the
Cover Set Induction Rule and must not occur free in Γ, A(x). The wff’s in ∆i are the
induction hypotheses. We extend to the rule C -Ind Conditions (P1) and (P2) on proper
parameters made in §2.

Now, let us denote with N DC -Ind(T) the calculus obtained by adding the rule C -Ind
to N DInt(T). Given a theory T, we say that N DC -Ind(T) contains the rule C -Ind in
the adequate context if C is a cover set for T.

In the following steps, we will prove that, ifHr is an Harrop-Theory and N DC -Ind(Hr)
contains C -Ind in the adequate context, then N DC -Ind(Hr) is uniformly constructive (of
course, in these hypotheses, one almost immediately shows that, for every sequent ⊢ A
provable in N DC -Ind(Hr), A ∈ Constr1(Hr) and A ∈ Constr2(Hr)). To this aim, we
will use the generalized rule Rhr consisting of the union of the generalized rules Cut,
Subst and of the generalized rules of Table 3. Since any of the generalized rules giving
rise to Rhr is non increasing and uniformly translatable into the calculus N DInt, also
Rhr meets these properties.

To get the main result we need the following notion of evaluation.

Definition 5.1 (Closed evaluation) Let Π be a set of proofs on LA and let A ∈ LA .
A is evaluated in Π iff the following conditions hold:

18

Extracting information from intermediate T-systems

Re∧ : ⊢ A ∈ Re∧(⊢ A ∧B)
⊢ B ∈ Re∧(⊢ A ∧B)

Re∀ : ⊢ A(x) ∈ Re∀(⊢ ∀xA(x))

Rmp : ⊢ B ∈ Rmp(⊢ A→B;⊢ A)

Id1 : ⊢ x = x ∈ Id1(ϵ)

Id2 : Γ,∆ ⊢ A(t′) ∈ Id2(Γ ⊢ A(t);∆ ⊢ t = t′)

Table 3: The generalized rule Rhr

(i) There is a proof π : ⊢ A ∈ Π;

(ii) For every closed instance θA of A, one of the following conditions holds:

(a) θA is atomic or negated;

(b) θA ≡ B ∧ C, and both B and C are evaluated in Π;

(c) θA ≡ B ∨ C, and either B is evaluated in Π or C is evaluated in Π;

(d) θA ≡ B→C, and either B is not evaluated in Π or C is evaluated in Π;

(e) θA ≡ ∃xB(x), and B(t/x) is evaluated in Π for some closed term t of LA ;

(f) θA ≡ ∀xB(x), and, for every closed term t of LA , B(t/x) is evaluated in Π.

A set Γ of wff’s is evaluated in a set of proofs Π if every wff A ∈ Γ is evaluated in Π.

First of all we prove a general result about provability in D(R,Σ).

Lemma 5.2 Let R be any generalized rule including Cut and Subst and let C be an
R-closed calculus. For every set of proofs Π ⊆ C and every proof π : Γ ⊢ A belonging to
the closure under substitution of [Π], if Γ is evaluated in D(R, Seq([Π])), then the sequent
⊢ A is provable in D(R, Seq([Π])).

Proof: Since π belongs to the closure under substitution of [Π], there exist π′ : Γ′ ⊢
A′ ∈ [Π] and a substitution θ of individual variables such that θΓ′ ⊢ θA′ ≡ Γ ⊢ A.
Thus, by definition, D(R, Seq([Π])) contains a proof of the sequent Γ′ ⊢ A′ and hence,
since D(R, Seq([Π])) is Subst-closed, there exists a proof τ ′ : Γ ⊢ A in D(R, Seq([Π])).
Moreover, since Γ = {H1, . . . , Hn} is evaluated in D(R, Seq([Π])), there exist proofs τ1 :
⊢ H1,. . . , τn : ⊢ Hn in D(R, Seq([Π])). Since D(R,Seq([Π])) is Cut-closed and contains
the proofs τ ′, τ1, . . . τn, it also contains a proof τ∗ : ⊢ A. 2

Now, let DRhr(Π) be an abbreviation for D(Rhr, Seq(Π)).

Lemma 5.3 Let Hr be an Harrop theory such that N DC -Ind(Hr) contains C -Ind in
the adequate context and let Π be any set of proofs of N DC -Ind(Hr). For every proof
π : Γ ⊢ A belonging to the closure under substitution of [Π], if Γ is evaluated in DRhr([Π]),
then A is evaluated in DRhr([Π]).

19

5. A wide family of uniformly constructive T-systems

Proof: Point (i) of Definition 5.1 follows from Lemma 5.2; to prove Point (ii) we proceed
by induction on depth(π).

Basis: If depth(π) = 0, we have two cases: the only rule applied in π is either an
assumption introduction or an axiom-rule. In the former case Γ = {A} and hence A is
trivially evaluated in DRhr([Π]). In the latter case A is a closed Harrop wff, Γ is empty
and we can easily prove, by a secondary induction on the degree of the Harrop wff A,
that ⊢ A provable in DRhr([Π]) implies A evaluated in DRhr([Π]). As an example, let us
consider the case A ≡ B→C. Let us suppose that B is evaluated in DRhr([Π]); then there
exists a proof τ ′ : ⊢ B in DRhr([Π]), and since DRhr([Π]) is Rmp-closed and contains the
proof of the sequent ⊢ B→ C (by Point (i)), it also contains a proof of ⊢ C, which is
evaluated in DRhr([Π]) by induction hypothesis.

Step: Let us suppose that depth(π) = h+1. The proof goes on by cases according to the
last rule applied in π; here we only discuss two representative cases.

Disjunction Elimination.

π : Γ ⊢ A ≡ π0 : Γ0 ⊢ B1 ∨B2 π1 : Γ1, B1 ⊢ A π2 : Γ2, B2 ⊢ A
Γ ⊢ A

E∨

Let θA be any closed instance of A. Since θΓ0 is evaluated in DRhr([Π]), θπ0 belongs to
the closure under substitution of [Π], and depth(π0) ≤ h, we get, by induction hypothesis,
that θB1 ∨ θB2 is evaluated in DRhr([Π]). Thus, there exists i ∈ {1, 2} such that θBi is
evaluated in DRhr([Π]) and, since θπi : θΓi, θBi ⊢ θA belongs to the closure under substi-
tution of [Π], we get, by induction hypothesis, that θA is evaluated in DRhr([Π]).

Generalized induction rule:

π : Γ ⊢ A ≡
π1 : Γ,∆1 ⊢ B(t1) . . . πn : Γ,∆n ⊢ B(tn)

Γ ⊢ B(x)
C -Ind

Let us consider an arbitrary closed instance θB(x) of B(x) and let t = θ(x). The proof
goes on by a secondary induction on the structure of the term t. The basis is the case where
t ≡ c is a constant symbol of A . In this case c belongs to the cover set C , then, by the
definition of the rule C -Ind, there exists a subproof πi : Γ ⊢ B(c), for some i ∈ {1, . . . , n};
thus, the assertion immediately follows from the principal induction hypothesis applied to
the proof θπi. Now, let us suppose that the assertion holds for any term t′ with complexity
less than or equal to j, and let j+1 be the complexity of t. By the definition of a cover set,
there exists a term ti ∈ C such that, for some substitution θ′ only acting on the variables
yi1, . . . , y

i
ki

, t = θ′ti ∈ Int ⊕ Hr. Let us consider the proof πi : Γ,∆i ⊢ B(ti), and let
us apply the substitution θ′ to this proof. By the convention on the proper parameters,
we have that the proof θθ′πi is a proof of the sequent θΓ, θθ′∆i ⊢ θB(θ′ti). Notice that
θθ′∆i contains wff’s of the kind θB(t′), with t′ a closed term with complexity less than
or equal to j. Thus, we can apply the secondary induction hypothesis and deduce that
θ′∆i is evaluated in DRhr([Π]); finally, by applying the principal induction hypothesis to
the proof θθ′πi, we get that θB(θ′ti) is evaluated in DRhr([Π]). Now, it is easy to prove,
by induction on the term t and using the assumption t = θ′ti ∈ Int ⊕Hr, that θB(t) is
evaluated in DRhr([Π]) iff θB(θ′ti) is evaluated in DRhr([Π]). 2

20

Extracting information from intermediate T-systems

Corollary 5.4 Let Hr be an Harrop theory such that N DC -Ind(Hr) contains C -Ind in
the adequate context and let Π be a set of proofs of N DC -Ind(Hr). For every τ : Γ ⊢ A ∈
DRhr([Π]) and every substitution θ, if θΓ is evaluated in DRhr([Π]), then θA is evaluated
in DRhr([Π]).

Proof: Point (i) of Definition 5.1 immediately follows from Lemma 5.2, taking as C the
calculus DRhr([Π]).

To prove Point (ii), we proceed by induction on the overall number of applications of
the generalized rules Cut, Re∧, Re∀, Rmp, Id1 and Id2 occurring in τ .

Basis: If none of these rules is applied in τ , then τ : Γ ⊢ A is obtained by applying a
(possibly empty) sequence of Subst to a sequent in Seq([Π]). Hence, there exists a proof
π′ : Γ′ ⊢ A′ in [Π] such that θ′Γ′ ⊢ θ′A′ ≡ Γ ⊢ A for some substitution θ′; then, also the
sequent θΓ ⊢ θA ≡ θθ′Γ′ ⊢ θθ′A′ has a proof in the closure under substitution of [Π], and,
since θΓ is evaluated in DRhr([Π]), by Lemma 5.3, θA is evaluated in DRhr([Π]).

Step: Now, let us suppose that τ contains h+1 applications of the above rules. The proof
goes on according to the last among these rules applied in τ . As an example we treat the
case of the Cut rule.

Rule Cut. Then the proof τ : Γ ⊢ A has the following form:

τ1 : Γ′
1 ⊢ H τ2 : Γ′

2, H ⊢ A
Cut

Γ′ ⊢ A′

Subst

...
Subst

θ′Γ′ ⊢ θ′A′

where Γ′ = Γ′
1∪Γ′

2 and τ ends with a (possibly empty) sequence of applications of Subst.
Since θθ′Γ1 ⊆ θθ′Γ′ is evaluated in DRhr([Π]), by induction hypothesis on the proof

τ1 : Γ′
1 ⊢ H

Subst

θθ′Γ′
1 ⊢ θθ′H

we get that θθ′H is evaluated in DRhr([Π]). Hence, θθ′Γ′
2, θθ

′H is evaluated in DRhr([Π]),
and, by induction hypothesis on the proof

τ2 : Γ′
2,H ⊢ A′

Subst

θθ′Γ′
2, θθ

′H ⊢ θθ′A′

θθ′A′ ≡ θA is evaluated in DRhr([Π]).

2

Now, if Hr is an Harrop theory such that N DC -Ind(Hr) contains C -Ind in the ad-
equate context and Π is any set of proofs of N DC -Ind(Hr), then it is immediate to
check that the set of theorems of DRhr([Π]) is constructive. Let us suppose, as an ex-
ample, that ∃xA(x) is a closed wff belonging to Theo(DRhr([Π])). Then there exists a
proof τ : ⊢ ∃xA(x) in DRhr([Π]). Since the empty set of premises is trivially evaluated
in DRhr([Π]), by Corollary 5.4 we have that ∃xA(x) is evaluated in DRhr([Π]). By Defi-
nition 5.1, it follows that there exists a closed term t of LA such that A(t) is evaluated
in DRhr([Π]). Hence, by Point (i) of Definition 5.1, A(t) ∈ Theo(DRhr([Π])) and hence
Theo(DRhr([Π])) satisfies (Ed). In a similar way we can prove that Theo(DRhr([Π])) en-
joys the disjunction property. Thus, by the constructivity of Theo(DRhr([Π])), recalling

21

5. A wide family of uniformly constructive T-systems

that Rhr is a non-increasing generalized rule and N DC -Ind(Hr) is uniformly Rhr-closed,
we deduce:

Theorem 5.5 Let Hr be an Harrop theory such that N DC -Ind(Hr) contains C -Ind in
the adequate context. Then the calculus N DC -Ind(Hr) is uniformly constructive. 2

5.2 Harrop Theories with Descending Chain Principle

Let us consider a signature A containing the binary relation < and let T be an A -theory
axiomatizing < as an irreflexive and transitive relation (e.g., T may contain the Harrop
axioms ∀x(¬x < x) and ∀x∀y∀z(x < y ∧ y < z→ x < z)). We call Descending Chain
Principle the principle

(DCP) ∃xA(x) ∧ ∀y(A(y)→∃z((A(z) ∧ z < y) ∨B))→B with y, z ̸∈ FV(B).

For a discussion on the meaning, power, and relevance for Computer Science of (DCP)
we refer the reader to [Ferrari, 1997; Ferrari et al., 1999; Miglioli et al., 1994; Miglioli and
Ornaghi, 1981].

The formulation of (DCP) as a pseudo-natural deduction rule can be given as follows:

Γ ⊢ ∃xA(x) Γ, A(y) ⊢ ∃z(A(z) ∧ z < y) ∨B

Γ ⊢ B
DCP

where y is the proper parameter of DCP and y ̸∈ FV(Γ) and y ̸∈ FV(B).

Let N DDCP(T) be the pseudo-natural deduction calculus over the language LA ob-
tained by adding to N DInt(T) the rule DCP. Now, we say that the calculus N DDCP(T)
contains the rule DCP in the adequate context if there exists an A -structure M such that:

(dcp-1) M |= T⊕ (DCP);

(dcp-2) The relation <M (that is, the interpretation in the structure M of the relation
symbol <) is well founded.

Now, under the previous hypotheses, one can show that, for every sequent ⊢ A provable
in N DDCP(Hr), A ∈ Constr1(Hr) andA ∈ Constr2(Hr). Also, given an Harrop theory
Hr, the proof of uniform constructivity of N DDCP(Hr) is similar to the one given in the
previous section for the calculus N DC -Ind(Hr) and uses the same generalized rule Rhr.
Here we only discuss the main difference, that is we analyze the rule DCP in the frame
of the proof of the induction step of Lemma 5.3.

Let Hr be an Harrop theory such that N DDCP(Hr) contains the rule DCP in the
adequate context. Let Π ⊆ N DDCP(Hr), let π : Γ ⊢ B be a proof belonging to the
closure under substitution of [Π] such that Γ is evaluated in DHr([Π]) and let π : Γ ⊢ B
have the following form:

π1 : Γ ⊢ ∃xA(x) π2 : Γ, A(y) ⊢ ∃x(A(x) ∧ x < y) ∨B

Γ ⊢ B
DCP

Let us suppose that some closed instance θB of B is not evaluated in DHr([Π]). By
induction hypothesis, θ∃xA(x) is evaluated in DHr([Π]), and hence there exists a closed

22

Extracting information from intermediate T-systems

term t0 such that θA(t0/x) is evaluated in DHr([Π]). By the conventions on the proper
parameters, we have that π2[t0/y] is a proof of the sequent θΓ, θA(t0/y) ⊢ θ∃x(A(x)∧x <
t0)∨θB. Thus, by induction hypothesis, θ∃x(A(x)∧x < t0)∨θB is evaluated in DHr([Π]).
Since θB is not evaluated in DHr([Π]), this means that there exists a closed term t1 such
that both θA(t1) and t1 < t0 are evaluated in DHr([Π]). Now, iterating this argument,
we can find an infinite sequence t0, t1, . . . , tn, . . . of closed terms of LA such that

t1 < t0 , t2 < t1 , . . . , tn+1 < tn , . . .

are evaluated, and hence provable, in DHr([Π]). Since N DDCP(Hr) is Rhr closed, this
implies that all these wff’s are provable in N DDCP(Hr), and hence they are provable
from Hr ∪ (DCP) using Classical Logic. This implies that, in every classical model M of
Hr⊕ (DCP), the relation <M contains an infinite descending chain; but this contradicts
Conditions (dcp-1) and (dcp-2), hence B is evaluated in DHr([Π]).

Thus, we can assert:

Theorem 5.6 Let Hr be an Harrop theory such that N DDCP(Hr) contains DCP in the
adequate context. Then the calculus N DDCP(Hr) is uniformly constructive. 2

5.3 Harrop Theories with Markov Principle

To provide a further example of a uniformly constructive T-system, we consider the well
known Markov Principle (Mk) given in Table 2. Detailed discussions about the relevance
of this principle in the area of constructivism and for program synthesis can be found
in [Miglioli and Ornaghi, 1981; Troelstra, 1973; Voronkov, 1987]. (We note that (Mk) is
recursively realizable in the sense of Kleene [Kleene, 1952], as stated in [Troelstra, 1973].)
The formulation of (Mk) as a pseudo-natural deduction rule can be given as follows:

Γ,¬¬∃xA(z) ⊢ ∀x(A(x) ∨ ¬A(x))

Γ,¬¬∃xA(x) ⊢ ∃xA(x)
Mk

Let N DMk(T) be the pseudo-natural deduction calculus over the language LA ob-
tained by adding to N DInt(T) the rule Mk. We say that the calculus N DMk(T) contains
the rule Mk in the adequate context if:

(mk) There exists an A -structure M such that M |= T and M is reachable.

Also in this case, for an Harrop theory Hr, we do not provide the complete proof of
uniform constructivity, but we analyze it as a case of the proof of Lemma 5.3, correspond-
ing to the application of the rule Mk. Here, π : Γ ⊢ H has the following form:

π1 : Γ
′,¬¬∃xA(x) ⊢ ∀x(A(x) ∨ ¬A(x))

Γ′,¬¬∃xA(x) ⊢ ∃xA(x)
Mk

We must show that, if Γ′,¬¬∃xA(x) is evaluated in DHr([Π]), then ∃xA(x) is evaluated in
DHr([Π]). Let us consider a closed instance θ∃xA(x) of ∃xA(x). By induction hypothesis
on the proof θπ1, we have that θ∀x(A(x) ∨ ¬A(x)) is evaluated in DHr([Π]). Hence, by
definition, for every closed term t of LA , θA(t/x) ∨ ¬θA(t/x) is evaluated in DHr([Π]).
Let us suppose that, for every closed term t, ¬θA(t/x) is evaluated in DHr([Π]). This

23

5. A wide family of uniformly constructive T-systems

implies that, for each term t, there exists a proof τt : ⊢ ¬θA(t/x) in DHr([Π]). Since
N DMk(Hr) is Rhr-closed and Int ⊕ (Mk) ⊕ Hr ⊆ Cl ⊕ Hr, by the above facts, we
deduce:

(1) θ∃xA(x) ∈ Cl⊕Hr

(2) For every closed term t of LA , θ¬A(t/x) ∈ Cl⊕Hr.

But, by the Soundness Theorem of Classical Logic, it is easy to check that Facts (1)
and (2) and Condition (mk) lead to a contradiction. Hence, there must exist at least a
closed term t such that θA(t/x) is evaluated in DHr([Π]). This immediately implies that
θ∃xA(x) is evaluated in DHr([Π]).

This should convince the reader that, arguing along the lines of §5.1, one can prove
the following result:

Theorem 5.7 Let Hr be an Harrop theory such that N DMk(Hr) contains Mk in the
adequate context. Then, the calculus N DMk(Hr) is uniformly constructive. 2

5.4 Further uniformly constructive calculi

Of course, we can combine calculi such as the ones considered in §5.1, 5.2 and 5.3 into
single bigger ones and show (without affecting the involved generalized rules) that the
resulting calculi are still uniformly constructive.

To be more precise, let < be a binary relation symbol belonging to a signature A ,
and let Hr be an Harrop theory in the language LA axiomatizing < as an irreflexive and
transitive relation. Let C be a cover set for Hr. Suppose Hr to simultaneously satisfy
the following conditions:

(i) The calculus N DC -Ind(Hr) contains the rule C -Ind in the adequate context;

(ii) The calculus N DDCP(Hr) (related to the relation symbol <) contains the rule DCP
in the adequate context;

(iii) The calculus N DMk(Hr) contains the rule Mk in the adequate context.

Let N DC -Ind,DCP,Mk(Hr) be the pseudo-natural deduction calculus containing all the
rules of N DC -Ind(Hr), N DDCP(Hr) and N DMk(Hr). Then we have:

(F1) N DC -Ind,DCP,Mk(Hr) is uniformly constructive.

Let us remark that (F1) involves a wide family of theories. In particular, the theory
PA of Arithmetic can be expressed by a set of Harrop axioms enriched by an Induction
Rule meeting the conditions of (F1); further, PA fulfills the requirements of (F1) also
with respect to Markov Principle, since its standard model is reachable; finally, in the
frame of PA one can define various irreflexive and transitive relations making adequate
the corresponding Descending Chain Principles (it is to be pointed out, however, that
taking < as the usual strict order on the natural numbers, the corresponding Descending
Chain Principle is already derivable in AInt).

A further extension can be obtained by adding to the calculi considered in (F1) other
principles of Constr1(Hr) explained in Table 2. In this sense, Kuroda Principle (Kur)

24

Extracting information from intermediate T-systems

does not give rise to new difficulties and its addition provides uniformly constructive cal-
culi which can be handled by means of the previous generalized rules. But we can do more,
i.e., we can add to any calculus considered in (F1) (possibly enriched with (Kur)) also
the Extended Scott Principle (St∃) (or the weaker Scott Principle (St)) without affecting
their uniform constructivity (the proof of this fact, which requires the introduction of new
generalized rules and a suitable generalization of the notion of evaluation, is omitted; for
more information, the reader is referred to [Ferrari et al., 1999]).

Thus, indicating with N DC -Ind,DCP,Mk,Kur,St∃(Hr) the extension of the calculus of
(F1) with inference rules for (Kur) and (St∃), under the adequacy hypotheses involved in
(F1) we get:

(F2) N DC -Ind,DCP,Mk,Kur,St∃(Hr) is uniformly constructive.

One might add to any calculus of (F2) further principles of Constr1(Hr) explained
in Table 2, but the addition of (wGrz) and/or (DT) gives rise to (yet uniformly semicon-
structive) calculi which cannot be extended into constructive ones without affecting their
effectiveness, in line with the results explained in the next section. On the other hand,
in general (i.e., for every Harrop theory Hr) we cannot extend (F2) to calculi containing
principles of Table 2 such as (KP∨) and (KP∃) (which, incidentally, admit suitable re-
cursive realizability interpretations, as explained in [Troelstra, 1973]), since the following
constructive incompatibility phenomena are well known or can be easily proved:

(A) The addition of both (Mk) and (KP∃) to AInt gives rise to ACl [Troelstra, 1973];

(B) The addition of both (Mk) and (KP∨) to AInt gives rise to a PA-system which is
not semiconstructive;

(C) The addition of both (St∃) and (KP∃) to AInt gives rise to a PA-system which is
not semiconstructive.

However, denoting with N DC -Ind,DCP,KP∨,KP∃,Kur(Hr) the calculus obtained by
adding rules for (DCP), (KP∨), (KP∃) and (Kur) to the calculus N DC -Ind(Hr), assuming
that the adequacy conditions involved in (F1) and (F2) are satisfied, and using appropriate
generalized rules, one can prove:

(F3) N DC -Ind,DCP,KP∨,KP∃,Kur(Hr) is uniformly constructive.

The further extension of any calculus of (F3) by means of the principle (wGrz) gives
rise to uniformly semiconstructive calculi such as the ones considered in the next section.

6 Uniformly semiconstructive PA-systems

In this section we will investigate the uniform semiconstructivity of some calculi including
Intuitionistic Arithmetic (but we might as well consider a more general family of calculi
involving arbitrary Harrop theories, Cover Set Inductions and Descending Chain Princi-
ples, as made in the previous section). For the sake of simplicity, instead of considering
the calculi N DInt(PA) and N DCl(PA), we will consider the more usual calculi N DAInt

and N DACl, obtained by adding the rules of Table 4 to N DInt and N DCl respectively.

25

6. Uniformly semiconstructive PA-systems

Γ ⊢ 0 = S(x)

Γ ⊢ ⊥
S1

Γ ⊢ S(t) = S(t′)

Γ ⊢ t = t′
S2

Γ ⊢ t+ 0 = t
+1

Γ ⊢ t+ S(t′) = S(t+ t′)
+2

Γ ⊢ t ∗ 0 = 0
∗1

Γ ⊢ t ∗ S(t′) = t ∗ t′ + t
∗2

Γ ⊢ A(0) ∆, A(p) ⊢ A(S(p))
Γ,∆ ⊢ A(x)

Ind where p does not occur free in ∆

Table 4: Rules for N DAInt

6.1 A uniformly semiconstructive PA-system included in Constr2(PA)

In this section we will discuss the uniformly semiconstructive system AInt+ obtained by
adding to Intuitionistic Arithmetic AInt the axioms (Kur), (wGrz), (KP∨) and (KP∃)
of Table 2, where (wGrz) is a weakened form of the well known Grzegorczyk Principle
(Grz), (KP∨) is Kreisel-Putnam Principle, a principle well known in the literature of
propositional intermediate logics (see, e.g., [Kreisel and Putnam, 1957; Troelstra, 1973])
and (KP∃), which is also known in the area of constructivism as (IP) [Troelstra, 1973],
naturally completes the meaning of (KP∨) at the predicate level. A maximal constructive
intermediate predicate logic including (KP∨) and (KP∃) is studied in [Avellone et al.,
1996].

The above principles can be expressed by the pseudo-natural deduction rules of Ta-
ble 5; in the following we will prove that the calculus N DAInt+ obtained by adding the
rules of Table 5 to N DAInt is uniformly semiconstructive.

We denote with Raint+ the union of the generalized rules of Table 6 and of the
generalized rules Cut and Subst. It is easy to check that Raint+ is non-increasing and
that the calculus N DACl is uniformly Raint+-closed.

Γ1 ⊢ ∀x¬¬A(x) Γ2 ⊢ ∀x(A(x) ∨B)

Γ1,Γ2 ⊢ ∀xA(x) ∨B
wGrz with x ̸∈ FV(B)

Γ ⊢ ∀x¬¬A(x)
Γ ⊢ ¬¬∀xA(x)

Kur
Γ,¬A ⊢ B ∨ C

Γ ⊢ (¬A→B) ∨ (¬A→C)
KP∨

Γ,¬A ⊢ ∃xB(x)

Γ ⊢ ∃x(¬A→B(x))
KP∃

Table 5: Rules for N DAInt+

26

Extracting information from intermediate T-systems

Now, we will prove that, for every set Π of proofs of N DAInt+ , the information
contained in the subproofs of Π is sufficient to obtain a generalized Raint+-subcalculus
of N DACl which constructively completes the information contained in Theo([Π]). Let
us denote with DAInt+([Π]) the abstract calculus D(Raint+, Seq([Π])).

Id1 : ⊢ x = x ∈ Id1(ϵ)

Id2 : Γ,∆ ⊢ A(t′) ∈ Id2(Γ ⊢ A(t);∆ ⊢ t = t′)

Sum : ⊢ x+ 0 = x ∈ Sum(ϵ)
⊢ x+ Sy = S(x+ y) ∈ Sum(ϵ)

Prod : ⊢ x ∗ 0 = 0 ∈ Prod(ϵ)
⊢ x ∗ Sy = x ∗ y + x ∈ Prod(ϵ)

Rkp∨ : Γ,∆ ⊢ ¬A→B ∈ Rkp∨1(Γ ⊢ B;∆ ⊢ (¬A→B) ∨ (¬A→C)) with ¬A ̸∈ Γ
Γ,∆ ⊢ ¬A→B ∈ Rkp∨1(Γ,¬A ⊢ B;∆ ⊢ (¬A→B) ∨ (¬A→C))
Γ,∆ ⊢ ¬A→C ∈ Rkp∨2(Γ ⊢ C;∆ ⊢ (¬A→B) ∨ (¬A→C)) with ¬A ̸∈ Γ
Γ,∆ ⊢ ¬A→C ∈ Rkp∨2(Γ,¬A ⊢ C; ∆ ⊢ (¬A→B) ∨ (¬A→C))

¬B ⊢ ¬B ∈ Rkp∨3(∆ ⊢ (¬A→¬B) ∨ (¬A→C))
¬C ⊢ ¬C ∈ Rkp∨4(∆ ⊢ (¬A→B) ∨ (¬A→¬C))

Rkp∃ : Γ,∆ ⊢ ¬A→B(t) ∈ Rkp∃1(Γ ⊢ B(t);∆ ⊢ ∃x(¬A→B(x))) with ¬A ̸∈ Γ
Γ,∆ ⊢ ¬A→B(t) ∈ Rkp∃1(Γ,¬A ⊢ B(t);∆ ⊢ ∃x(¬A→B(x)))

¬B(t) ⊢ ¬B(t) ∈ Rkp∃2(∆ ⊢ ∃x(¬A→B(x)))

Rcl : Γ ⊢ ∀xA(x) ∈ Rcl(Γ ⊢ ∀x¬¬A(x))

Table 6: The generalized rule Raint+

The proof of uniform semiconstructivity will be carried out using the following notion
of evaluation.

Definition 6.1 (Neg-evaluation) Let Π be a set of proofs on LPA, and let Neg and
A be a set of closed negated wff’s and a wff in the language LPA respectively. A is
Neg-evaluated in Π iff the following conditions hold:

(i) Either A ∈ Neg or there exists a proof π : Γ ⊢ A ∈ Π with Γ ⊆ Neg;

(ii) For every closed instance θA of A, one of the following conditions holds:

(a) θA is atomic or negated;

(b) θA ≡ B ∧ C, and both B and C are Neg-evaluated in Π;

(c) θA ≡ B ∨ C, and either B is Neg-evaluated in Π or C is Neg-evaluated in Π;

(d) θA ≡ B→C, and, for every set Neg′ of closed negated wff’s of LPA such that
Neg′ ⊇ Neg, if B is Neg′-evaluated in Π then C is Neg′-evaluated in Π;

(e) θA ≡ ∃xB(x), and B(t/x) is Neg-evaluated in Π for some closed term t of LPA;

(f) θA ≡ ∀xB(x), and, for every closed term t of LPA, B(t/x) is Neg-evaluated in
Π.

27

6. Uniformly semiconstructive PA-systems

The following results, which can be easily proved, will be needed.

Proposition 6.2 Let Neg be a set of closed negated wff’s, let Π be a set of proofs and
let A be a wff. If A is Neg-evaluated in Π, then A is Neg′-evaluated in Π for every set of
closed negated wff’s Neg′ including Neg. 2

Proposition 6.3 Let Π be a Cut-closed set of proofs, let Neg be a set of negated wff’s,
let H be a closed wff and let A be an arbitrary wff. If A is Neg ∪ {¬H}-evaluated in Π
and ¬H is Neg-evaluated in Π, then A is Neg-evaluated in Π. 2

Lemma 6.4 Let Π be any set of proofs of N DAInt+ and let Neg be a set of closed negated
wff’s of LPA. For any proof π : Γ ⊢ H belonging to the closure under substitution of [Π],
if Γ is Neg-evaluated in DAInt+([Π]), then H is Neg-evaluated in DAInt+([Π]).

Proof: Since π belongs to the closure under substitution of [Π], there exist a proof
π′ : Γ′ ⊢ H ′ ∈ [Π] and a substitution θ such that θΓ′ ⊢ θH ′ ≡ Γ ⊢ H. Thus, by definition,
DAInt+([Π]) contains a proof of the sequent Γ′ ⊢ H ′ and, since it is Subst-closed, it also
contains a proof τ ′ : Γ ⊢ H. Now, let Γ = ∆0 ∪ {H1, . . . , Hn}, where ∆0 = Γ ∩ Neg.
Since Γ is Neg-evaluated in DAInt+([Π]), DAInt+([Π]) contains proofs τ1 : ∆1 ⊢ H1, . . . ,
τn : ∆n ⊢ Hn with ∆1 ∪ · · · ∪ ∆n ⊆ Neg. Let ∆∗ = ∆0 ∪ ∆1 ∪ · · · ∪ ∆n; by repeatedly
applying the Cut rule to the proofs τ ′, τ1, . . . , τn, we can construct in DAInt+([Π]) a proof

τ∗ : ∆∗ ⊢ H. (6.1)

The proof of Point (ii) goes on by induction on depth(π). If depth(π) = 0, the only
rule which occurs in π is either an assumption introduction or one of the zero-premises
rules corresponding to the axioms for identity, sum and product. In the former case the
assertion trivially follows. In the latter case, the wff A is atomic; hence, by Point (i)
and closure under Subst of DAInt+([Π]), we immediately get the assertion. To prove the
induction step, we proceed by cases according to the last rule applied in π. Here we only
treat the representative cases of the rules Ind, wGrz and KP∃.

Induction Rule.

π : Γ ⊢ H ≡
π1 : Γ1 ⊢ B(0) π2 : Γ2, B(p) ⊢ B(S(p))

Γ1,Γ2 ⊢ B(x)
Ind

First of all, the reader can easily prove that, given a closed term t of LPA, B(t) is Neg-
evaluated in DAInt+([Π]) iff B(Sn0) is Neg-evaluated in DAInt+([Π]), where Sn0 is the
canonical form of t in AInt. Therefore, to prove the assertion it is sufficient to prove that
θB(Sh0) is Neg-evaluated in DAInt+([Π]) for every closed substitution θ and every h ≥ 0.
We proceed by induction on h; since Γ1 ⊆ Γ is Neg-evaluated in DAInt+([Π]), θB(0) is
Neg-evaluated in DAInt+([Π]). Now, let us suppose that θB(Sh0) is Neg-evaluated in
DAInt+([Π]), with h ≥ 0; then the proof θπ2[S

h0/p] : θΓ2, θB(Sh0/p) ⊢ θB(Sh+10/p)
belongs to the closure under substitution of [Π] and hence, by the principal induction
hypothesis, B(Sh+10) is Neg-evaluated in DAInt+([Π]). This concludes the proof.

Rule wGrz.

π : Γ ⊢ H ≡
π1 : Γ1 ⊢ ∀x¬¬B(x) π2 : Γ2 ⊢ ∀x(B(x) ∨ C)

Γ1,Γ2 ⊢ ∀xB(x) ∨ C
wGrz

28

Extracting information from intermediate T-systems

Let θ be a closed substitution; we must prove that one between the wff’s θ∀xB(x) and
θC is Neg-evaluated in DAInt+([Π]). Let us suppose that θC is not Neg-evaluated
in DAInt+([Π]). Since, by induction hypothesis, θ∀x(B(x) ∨ C) is Neg-evaluated in
DAInt+([Π]), we deduce that, for every closed term t of LPA, θB(t/x) is Neg-evaluated
in DAInt+([Π]). To prove that θ∀xB(x) is Neg-evaluated in DAInt+([Π]), we only need to
show that θ∀xB(x) is provable from Neg in DAInt+([Π]). By induction hypothesis on the
proof π1, a sequent Γ′ ⊢ θ∀x¬¬B(x), with Γ′ ⊆ Neg, is provable in DAInt+([Π]); since the
latter set of proofs is Rcl-closed we get that also Γ′ ⊢ θ∀xB(x) belongs to DAInt+([Π]).
This concludes the proof.

Rule KP∨.

π : Γ ⊢ H ≡
π1 : Γ,¬B ⊢ C ∨D

Γ ⊢ (¬B→C) ∨ (¬B→D)
KP∨

We must prove that, for every closed substitution θ, one between the wff’s θ(¬B→C) and
θ(¬B→D) is Neg-evaluated in DAInt+([Π]). Since Γ is Neg-evaluated in DAInt+([Π]),
θΓ∪{θ¬B} is Neg∪{θ¬B}-evaluated in DAInt+([Π]). Then, by the induction hypothesis
on the proof θπ1, either θC or θD is Neg ∪ {θ¬B}-evaluated in DAInt+([Π]). For the
sake of definiteness, let us assume that θC is the evaluated wff. This implies that there
exists a proof τ : ∆ ⊢ θC ∈ DAInt+([Π]) with ∆ ⊆ Neg ∪ {θ¬B}; we remark that, if
θC ∈ Neg ∪ {θ¬B}, we can construct τ as follows

τ∗ : ∆∗ ⊢ (¬B→C) ∨ (¬B→D)
Subst

θ∆∗ ⊢ θ(¬B→C) ∨ θ(¬B→D)
Rkp∨3

θC ⊢ θC

where τ∗ is the proof of Point 6.1. Hence, the proof

τ∗ : ∆∗ ⊢ (¬B→C) ∨ (¬B→D)
Subst

θ∆∗ ⊢ θ(¬B→C) ∨ θ(¬B→D) τ : ∆ ⊢ θC
Rkp∨1

θ∆ \ {θ¬B},∆∗ ⊢ θ(¬B→C)

belongs to DAInt+([Π]). This proves Point (i) of Definition 6.1 for θ(¬B→C). To prove
Point (ii) for this wff, let us suppose that θ¬B is Neg′-evaluated in DAInt+([Π]), with
Neg ⊆ Neg′. We already know that θC is Neg ∪ {θ¬B}-evaluated in DAInt+([Π]), and
hence, by Proposition 6.2, it is also Neg′ ∪ {θ¬B}-evaluated in DAInt+([Π]). Since θ¬B
is Neg′-evaluated in DAInt+([Π]), by Proposition 6.3 we have that θC is Neg′-evaluated
in DAInt+([Π]). This concludes the proof.

2

Corollary 6.5 Let Π be any set of proofs of N DAInt+. The set Theo([Π]) is semicon-
structive in Theo(DAInt+([Π])).

Proof: If A ∨ B is a closed wff in Theo([Π]), then there exists a proof π : ⊢ A ∨ B in
the closure under substitution of [Π]. Since the empty set of premises is trivially Neg-
evaluated in DAInt+([Π]) with Neg = ∅ by Lemma 6.4, A∨B is ∅-evaluated in DAInt+([Π]).
Thus, at least one of the wff’s A and B is ∅-evaluated in DAInt+([Π]); by Definition 6.1,
this means that one between the sequents ⊢ A and ⊢ B is provable in DAInt+([Π]). The
proof of the (wEd) property is similar. 2

29

6. Uniformly semiconstructive PA-systems

Since Raint+ is a non-increasing generalized rule, N DACl is uniformly Raint+-closed
and the previous corollary holds, we get:

Theorem 6.6 N DAInt+ is a uniformly semiconstructive calculus in N DACl. 2

Now, let us denote withAInt+ the intermediatePA-system included inConstr2(PA)
coinciding with Theo(N DAInt+). To conclude the presentation of this example, we will
prove that AInt+ cannot be extended into a recursively enumerable and constructive
T-system with T any theory including PA.

Theorem 6.7 There exists no consistent and recursively axiomatizable constructive T-
system S such that PA ⊆ T and AInt+ ⊆ S.

Proof: Let S be a constructive recursively axiomatizable T-system including AInt+

(with PA ⊆ T). Let p(x) be a unary recursively enumerable but not recursive predicate.
By the Normal Form Theorem, there exists a primitive recursive binary predicate q(x, y)
such that p(x) ↔ ∃yq(x, y). Now, by well known representability results, there exists a
wff A(x, y) with two free variables of LPA which strongly represents the predicate q(x, y)
in AInt; this means that ∀x∀y(A(x, y) ∨ ¬A(x, y)) ∈ AInt, and, for every a, b ∈ N,
denoting with ã and b̃ the corresponding numerals, if q(a, b) is true then A(ã, b̃) ∈ AInt,
and ¬A(ã, b̃) ∈ AInt if q(a, b) is false. Moreover, let G be a closed wff of LPA such that
G ̸∈ S and ¬G ̸∈ S (such a wff exists by the intuitionistic version of Gödel Incompleteness
Theorem, since S is recursively axiomatizable, see, e.g., [Troelstra, 1973]). Now, let us
consider the wff H(x) ≡ ∃yA(x, y) ∨ ∀y(¬A(x, y) ∨ (G ∨ ¬G)). It is easy to check that
H(x) is provable in AInt+. We will show that one can effectively decide whether p(k)
holds or not, for every natural number k. Indeed, since S is constructive and recursively
axiomatizable, there is a terminating effective procedure which, for every input k ∈ N,
outputs either a S-proof of ∃yA(k̃, y) or a S-proof of ∀y(¬A(k̃, y) ∨ (G ∨ ¬G)). Now, if
∃yA(k̃, y) ∈ S, then, by the constructivity of S, A(k̃, b̃) ∈ S for some numeral b̃; this
implies that ∃yq(k, y) holds. On the other hand, if ∀y(¬A(k̃, y) ∨ (G ∨ ¬G)) ∈ S, then,
since, by the hypotheses on the wff G, G ∨ ¬G ̸∈ S, we deduce that ¬A(k̃, b̃) ∈ S, for
every b ∈ N; this implies that ∃yq(k, y) does not hold. Since p(x) ↔ ∃yq(x, y), we have
that p(x) is recursive, against the assumptions. 2

6.2 A uniformly semiconstructive PA-system included in Constr1(PA)

Now, let us consider the PA-system AInt++ obtained by adding to Intuitionistic Arith-
metic AInt the axiom schema (DT) of Table 2.

N DAInt++ will denote the calculus for AInt++ obtained by adding the zero premises
rule

⊢ ∃xA(x) ∨ ∀x(A(x)→B ∨ ¬B)
DT

to the calculus N DAInt.

Now, we denote with Raint++ the union of the generalized rules Cut and Subst,
of the generalized rules Id, Sum, Prod of Table 6, and of the rules of Table 7. It is
easy to check that Raint++ is non-increasing and that the calculus N DACl is uniformly
Raint++-closed.

30

Extracting information from intermediate T-systems

Rdt1 : ⊢ ∃xA(x) ∈ Rdt1(⊢ A(t);⊢ ∃xA(x) ∨ ∀x(A(x)→B ∨ ¬B))

Rdt2 : ⊢ ∀x(A(x)→B ∨ ¬B) ∈ Rdt2(⊢ ∃xA(x) ∨ ∀x(A(x)→B ∨ ¬B))

Table 7: The generalized rule Raint++

Let us denote with DAInt++([Π]) the abstract calculus D(Raint++, Seq([Π])). The
proof of uniform semiconstructivity of N DAInt++ can be carried out along the lines of
the proof given in the previous section, but using the simpler notion of evaluation of
Definition 5.1. Hence the main lemma is:

Lemma 6.8 Let Π be any set of proofs of N DAInt++. For any proof π : Γ ⊢ H belonging
to the closure under substitution of [Π], if Γ is evaluated in DAInt++([Π]), then H is
evaluated in DAInt++([Π]).

In the proof we must consider the case where depth(π) = 0 and the only rule applied
in π is DT. In this case Γ is empty and H ≡ ∃xA(x) ∨ ∀x(A(x) → B ∨ ¬B). Let
us consider a closed instance θH of this wff, and let us suppose that θ∃xA(x) is not
evaluated in DAInt++([Π]). Then, for every closed term t of LPA, θA(t) is not evaluated
in DAInt++([Π]) (we remark that, by the Rdt1-closure of DAInt++([Π]), the case where
some θA(t) is evaluated in DAInt++([Π]) and θ∃xA(x) is not provable in DAInt++([Π])
cannot arise). But, since, for every closed term t of LPA, θA(t) is not evaluated in
DAInt++([Π]) and the latter set of proofs is Rdt2-closed, we immediately deduce that
θ∀x(A(x)→B∨¬B) is evaluated in DAInt++([Π]). Hence H is evaluated in DAInt++([Π]).

From the previous lemma, we get:

Corollary 6.9 Let Π be any set of proofs of N DAInt++. Then the set Theo([Π]) is
semiconstructive in Theo(DAInt++([Π])). 2

Since Raint++ is a non-increasing generalized rule, N DACl is uniformly Raint++-closed
and the previous corollary holds, we get:

Theorem 6.10 N DAInt++ is a uniformly semiconstructive calculus in N DACl. 2

We point out that the principle (St∃) of Table 2 (holding inConstr1(PA)) is derivable
from (DT) and (Kur). On the other hand we can add to AInt++ the rules Mk and Kur of
§5 without affecting its uniform semiconstructivity (and without extending the generalized
ruleRaint++). However, we can prove thatAInt++ cannot be extended into a recursively
enumerable and constructive T-system with PA ⊆ T.

Theorem 6.11 There exists no consistent and recursively axiomatizable constructive T-
system S such that PA ⊆ T and AInt++ ⊆ S.

Proof: Let S be a recursively axiomatizable and constructiveT-system includingAInt++

(with PA ⊆ T). We will show that, for every closed wff A, one can decide whether A ∈ S
or not. Indeed, let G be a closed wff of LPA such that G ̸∈ S and ¬G ̸∈ S (such

31

6. Uniformly semiconstructive PA-systems

a wff exists by the intuitionistic version of Gödel Incompleteness Theorem [Troelstra,
1973]). Since S is constructive and recursively axiomatizable and, for every closed wff A,
A∨ (A→G∨¬G) ∈ AInt++, there is a terminating effective procedure which, taking any
closed wff A of LPA as an input, outputs either a S-proof of A or a S-proof of A→G∨¬G.
Now, if A→G∨¬G ∈ S, by the choice of G and the constructivity of S, A ̸∈ S. Hence, the
set of theorems of S is recursive, against the Intuitionistic version of Church’s Theorem.

2

32

References

Avellone, A., Ferrari, M., and Miglioli, P. (1999). Synthesis of programs in abstract
data types. In 8th International Workshop on Logic-based Program Synthesis and
Transformation, volume 1559 of LNCS, pages 81–100. Springer-Verlag.

Avellone, A., Fiorentini, C., Mantovani, P., and Miglioli, P. (1996). On maximal inter-
mediate predicate constructive logics. Studia Logica, 57:373–408.

Bertoni, A., Mauri, G., and Miglioli, P. (1983). On the power of model theory to specify
abstract data types and to capture their recursiveness. Fundamenta Informaticae,
IV.2.

Bertoni, A., Mauri, G., and Miglioli, P. (1993). Some uses of model theory to specify
abstract data types and capture their recursiveness. Technical Report 96-93, Dipar-
timento di Scienze dell’informazione, Universit degli Studi di Milano.

Bertoni, A., Mauri, G., Miglioli, P., and Ornaghi, M. (1984). Abstract data types and
their extension within a constructive logic. In Kahn, G., MacQueen, D., and Plotkin,
G., editors, Semantics of Data Types, volume 173, pages 177–195. Springer-Verlag,
LNCS.

Bertoni, A., Mauri, G., Miglioli, P., and Wirsing, M. (1979). On different approaches to
abstract data types and the existence of recursive models. EATCS bulletin, 9:47–57.

Chang, C. and Keisler, H. (1973). Model Theory. North-Holland.

Ferrari, M. (1997). Strongly Constructive Formal Systems. PhD thesis, Dipartimento
di Scienze dell’Informazione, Università degli Studi di Milano, Italy. Available at
http://homes.dsi.unimi.it/~ferram.

Ferrari, M., Miglioli, P., and Ornaghi, M. (1999). On uniformly constructive and semi-
constructive formal systems. Submitted to Annals of Pure and Applied Logic.

Gentzen, G. (1969). Investigations into logical deduction. In Szabo, M., editor, The
Collected Works of Gerhard Gentzen, pages 68–131. North-Holland.

Goto, S. (1979). Program synthesis from natural deduction proofs. In International Joint
Conference on Artificial Intelligence, pages 339–341. Tokyo.

Kleene, S. (1952). Introduction to Metamathematics. Van Nostrand, New York.

Kreisel, G. and Putnam, H. (1957). Eine Unableitsbarkeitsbeweismethode für den in-
tuitionistischen Aussagenkalkül. Archiv für Mathematische Logik und Graundlagen-
forschung, 3:74–78.

33

References

Martin-Löf, P. (1982). Constructive mathematics and computer programming. In Choen,
L., Los, J., Pfeiffer, H., and Podewski, K., editors, Logic, Methodology and Philosophy
of Science VI, 1979, pages 153–175. North-Holland.

Medvedev, J. (1963). Interpretation of logical formulas by means of finite problems and
its relation to the realizability theory. Soviet Mathematics Doklady, 4:180–183.

Miglioli, P., Moscato, U., and Ornaghi, M. (1988). Constructive theories with abstract
data types for program synthesis. In Skordev, D., editor, Mathematical Logic and its
Applications, pages 293–302. Plenum Press, New York.

Miglioli, P., Moscato, U., and Ornaghi, M. (1989). Semi-constructive formal systems and
axiomatization of abstract data types. In Diaz, J. and Orejas, F., editors, TAP-
SOFT’89, pages 337–351. Springer-Verlag, LNCS.

Miglioli, P., Moscato, U., and Ornaghi, M. (1994). Abstract parametric classes and
abstract data types defined by classical and constructive logical methods. Journal of
Symbolic Computation, 18:41–81.

Miglioli, P. and Ornaghi, M. (1981). A logically justified model of computation I & II.
Fundamenta Informaticae, IV(1, 2):151–172,277–341.

Murthy, C. (1990). Extracting constructive content from calssical proofs. PhD thesis,
Department of Computer Science, Cornell University.

Ono, H. (1972). Some results on the intermediate logics. Publications of the Research
Institute for Mathematical Sciences, Kyoto University, 8:117–130.

Parigot, M. (1993). Classical proofs as programs. In Computational Logic and Proof
Theory. Third Kurt Gödel Colloquium, pages 263–276. Springer-Verlag.

Prawitz, D. (1965). Natural Deduction. Almquist and Winksell.

Takeuti, G. (1975). Proof Theory. North-Holland.

Troelstra, A., editor (1973). Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis, volume 344 of Lecture Notes in Mathematics. Springer-Verlag.

Voronkov, A. (1987). Deductive program synthesis and Markov’s principle. In Budach,
L., Bukharajev, R., and Lupanov, O., editors, Fundamentals of Computation Theory,
pages 479–482. International Conference FCT’87, Kazan, USSR, Springer-Verlag.

Wirsing, M. (1990). Algebraic specification. In van Leeuwen, J., editor, Handbook of
Theoretical Computer Science, pages 675–788. Elsevier Science Publisher B.V.

34

