
5 6 I E E E S O F T W A R E M a y / J u n e 2 0 0 0 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E

This article illustrates the automation of
the most expensive phases of a Goal Ques-
tion Metrics (GQM) measurement process.
In particular, I describe the use of a specific
tool for the definition, collection, analysis,
and feedback of measures, and the tech-
niques to interface such a tool with a config-
uration management system and metrics
tools. (See the “Research and Practice” side-
bar for more background information.) A
measurement program at Pirelli Cavi, the
Italian division of Pirelli Cables and Systems,
has employed these techniques to automate
the extraction of reliable and process-confor-
mant data for the development of a Telecom-
munications Management Network (TMN)
product. Although I focus on the GQM
methodology, this work also provides gen-
eral indications that apply in other contexts.

Why GQM?
The GQM1 is a systematic technique for

developing measurement programs for soft-
ware processes and products. The GQM

process is based on the idea that measure-
ment should be goal-oriented—that is, data
collection based on an explicitly documented
rationale. You can apply the GQM process
wherever you require a systematic approach
to defining a measurement program.2

Figure 1 shows relative costs of the GQM’s
required main activities.3 The absolute values
are not valid in general because they depend
on the nature and size of the goals and on the
amount, nature, and quality of the required
data. Nevertheless, they indicate these costs’
relative relevance. Figure 1 reports both one-
time costs (such as introducing the GQM
method in an organization) and costs that oc-
cur on every execution of the GQM process.
Producing GQM plans is considered a “per
project” cost, although you can often reuse
GQM plans, which reduces the process’s cost.
However, the degree of reusability (and sav-
ings) depends on the strategic goals.

Pirelli Cavi produces, among other prod-
ucts, TMN products compliant with CCITT
(Consultative Committee for International

feature
Providing Automated
Support for the GQM
Measurement Process

Luigi Lavazza, CEFRIEL and Politecnico di MilanoAutomating
support for the
Goal Question
Metrics process

can cut data
collection costs by

exploiting data
available in

configuration
management

systems as well as
data supplied by

code analyzers.
The author

introduces a tool
designed for this

purpose and
reviews its

development and
application
in industry.

M
easurement is a key factor for managing and improving
software development. The measurement process aims to de-
fine and operate a measurement program (that is, a context-
specific set of metrics) and to describe the required guidelines

and procedures for data collection and analysis. Effective and efficient
measurement requires methodological and technological support.

measurement

Telegraph and Telephone) recommendations.
Pirelli Cavi’s management wanted a better un-
derstanding of their T31 TMN product’s
quality, regarding failures and faults, and its
relation with the development process, re-
garding possible process improvement initia-
tives. (Here, I use IEEE standard terminology,
thus the term fault indicates an error in the
product, and failure indicates a perceivable
problem caused by one or more faults).

In practice, the management’s strategic goal
was to determine the most critical fault-gener-
ation phases through an objective and quanti-
tative characterization of the development pro-
cess. Similarly, they wanted to identify the
most critical fault-generation product parts.
Therefore, Pirelli Cavi’s management charged
CEFRIEL (Center for Research and Education
in Information Technology, www.cefriel.it),
which already had experience in GQM appli-
cation, with establishing a measurement pro-
cess and the suitable support environment.

Following indications from Pirelli Cavi’s
management, I defined two GQM goals re-
garding software development in the R&D
department:

■ Analyze the development process of T31,
for the purpose of better understanding
the causes of faults, from the viewpoint
of the software development team, in the
Pirelli Cavi R&D department.

■ Analyze the T31 product components,
for the purpose of better understanding
the origin of faults, from the viewpoint of
the software development team, in the
Pirelli Cavi R&D department.

The T31 product’s development exploits
PCMS (now Merant’s PVCS Dimensions) con-
figuration management software. PCMS,
which uses an Oracle relational database as a
repository, enforces a relatively rigid logical
schema. PCMS provides customizable docu-
ment templates, which can represent almost
any kind of information. For the T31 product,
the Change Requests and Test Defect Reports
functions were derived from the templates to
represent changes according to a given life cy-
cle. These documents contain most of the data
that the measurement plans need.

Automating the GQM Process
GQM plans can easily grow into quite

complex and large graphs—a single goal can

generate more than 100
metrics. Without specific
automated support, keep-
ing this amount of meta-
data under control is a
challenging task.

The GQM tool
CEFRIEL developed

the GQM tool, which
runs in the Microsoft
Windows environment, to overcome the
problems connected with the management
of GQM plans.

The tool supports editing of GQM goals
through predefined forms. Explicit relations
connect all of the plans’ components (goals,
abstraction sheets, questions, and metrics).
The GQM tool can verify the structural con-
sistency of plans—for example, it can check
whether each question is connected with a
goal and refined into metrics.

The GQM tool also allows reuse of the
plans’ components. The opportunity to re-
use components of GQM plans occurred
frequently in past applications. When defin-
ing a set of goals concerning the same de-
velopment process or similar products, one
component is commonly needed in different
places (for instance, the same question
asked in different goals). This is especially
true in mature organizations, where devel-
opers share an explicit common model of
the development process.

To make the interpretation and analysis of
collected data feasible, it is necessary to pro-
vide the means to establish, maintain, and
navigate links among data and the GQM
plan. Using the GQM tool, it is possible to
associate a GQM plan with an Access data-
base and a GQM item with a query (or a
table) defined in the database. The existence
of these links makes the GQM items more
understandable, modifiable, and reusable.

Analysis and interpretation of collected
data form an important phase of the GQM
process. This activity proceeds bottom up:
collected data are analyzed and aggregated to
derive answers to the questions and to evalu-
ate the degree of accomplishment of the re-
lated goals. The GQM tool supports data
analysis by running the queries associated
with the GQM items and displaying the re-
sults. The GQM tool borrows the computa-
tional power from the database management

M a y / J u n e 2 0 0 0 I E E E S O F T W A R E 57

200
180
160
140
120
100

80
60
40
20

0
Prestudy Identification

of goals
GQM
plan

Data
collection

Per organization costs
Per project costs

Figure 1. Cost of the
Goal Question Metrics
process phases.

system’s query system. This is quite different
from Metriflame, which provides data ma-
nipulation facilities in the tool (see the “Re-
search and Practice” sidebar).

Applying the GQM tool
The GQM tool was used in the process of

defining the GQM plans according to the
goals previously described. As is often the
case, in the work presented here an experi-
enced measurement team applied the tool,
rather than the process owner (that is,
Pirelli Cavi’s personnel).

Of course, the GQM plan had to refer to
the development process of the Pirelli Cavi
R&D Department and to the T31 product.
Fortunately, both the process and product
model were already represented in the SCM
(software configuration management) tool
used for the development. It was then quite
easy to adopt these models as a conceptual
reference to define the GQM plans.

For space reasons, I cannot report the
whole GQM plan here. However, to give an
idea of the plan, the following summarize
the most relevant questions:

■ What is the distribution of failures per
priority?

■ What is the distribution of faults per
component?

■ What is the distribution of faults per
type and originating phase?

■ What is the distribution of faults per
severity?

The associated metrics included:

■ Total number of failures;
■ For each failure, priority (that is, how

bad the effect was for the user), type, de-

tection time, conclusion time, and so on;
■ Total number of faults;
■ For each failure, severity (that is, how

difficult it was to correct), type, phase
when originated, detection time, correc-
tion time, and so on.

Configuration management data collection
PCMS stores data in an Oracle database.

A set of views (generated through a SQL
script distributed together with PCMS) lets
users access these data. The GQM tool uses
an Access database as a repository. To let the
GQM tool access PCMS data, it sufficed to
make Oracle data visible as an Access data-
base through ODBC (Open DataBase Con-
nectivity). In Access, we created a new table,
called T31_DATA, and then we linked it to
the relevant Oracle view. Any access to
T31_DATA was thus transformed into an
access to Oracle data. Once the link was es-
tablished, no further operation (such as data
import and conversions) was needed: data
created in PCMS was automatically avail-
able in the Access database, and hence to the
GQM tool.

My coworkers and I automatically de-
rived most of the required data from the
PCMS repository. Among these, several data
concerned failures (type, priority, and so on)
and faults (severity, responsible component,
and so on). However, some data required by
the GQM plan could not be collected auto-
matically, including the experience and do-
main knowledge of the personnel involved in
fault detection and correction. Noticeably,
data concerning the effort for correcting
faults (both the estimation and the actual
value) were already present in the documents
stored in PCMS and were easily retrieved. In
this case, the manual data collection activity
already formed part of the normal develop-
ment process, and the measure- ment process
simply exploited it.

The data contained in T31_DATA were
connected to the corresponding metrics def-
inition in the GQM tool through suitable
queries. All queries were simple and re-
quired little time to be written.

The data integration technique presented
here applies to any SCM tool employing a
relational DBMS repository supported by
ODBC. In practice, this technique can apply
to most commercial SCM tools.

5 8 I E E E S O F T W A R E M a y / J u n e 2 0 0 0

Future smart
metrics tool

Converter Output Krakatau
XML

metrics
file

SCM toolGQM tool

XML
parser

Converter Output RSM

GQM
database

SCM
repository

ODBC

SCM
tool

Manual data
collection procedures

Developer

Measurement
team

?

Figure 2. Goal Ques-
tion Metrics integra-
tion with software
configuration man-
agement and metrics
tools.

Metrics data collection
Although the GQM tool can automati-

cally access data in an SCM tool, such data
doesn’t always carry all the required infor-
mation, such as the code’s size and complex-
ity. The SCM tools store source code, but
you would need to compute its properties.

Several programs can measure static code
properties. Nevertheless, you cannot instruct
these tools to yield results conforming to a
well-defined schema (in our case, a GQM
plan). We further extended the GQM tool to
take advantage of the data that software
metrics tools produce. Particularly, we con-
sidered Krakatau and Resource Standard
Metrics (RSM). These tools produce differ-
ent outputs, such as number of SLOC, cy-
clomatic number, number of classes, meth-
ods per class, and so on. Both of them pro-
duce HTML output, but quite surprisingly
none yields XML output. Because XML is
rapidly becoming a standard for the repre-
sentation of CASE tools data, it seemed
quite natural to organize the GQM tool’s in-
tegration with metrics tools in two steps:

■ We defined a DTD (document type defi-
nition) for representing code measures.
The GQM tool was equipped with a
parser that reads XML files that use such
a DTD and stores the corresponding data
in the Access database.

■ For each considered metrics tool, we de-
veloped a translator from the native for-
mat into XML.

We justify our choice of introducing an
intermediate data representation in XML by
considering that when metrics tools yield re-
sults in XML, the GQM tool will be ready to
understand them. We might see several met-
rics tools producers adopt a unique DTD
(probably similar to the one that the GQM
tool is using) in the future; in that case, the
GQM tool could read the output of several
metrics tools with little or no translation.

Figure 2 illustrates the GQM tool’s inte-
gration with SCM and metrics tools.

We found it relatively easy to solve the
problem of translating and importing data.
We faced a more subtle problem in deciding
where to store the data from the metrics
tools, because every piece of data could cor-
respond to different metrics, according to
the GQM plan. The following set of tables,

which can contain any outcome of the met-
rics tools, gives a solution:

■ Table “Component” stores the list of
items (projects, files, classes, methods,
and so on) being measured.

■ Table “Composition” indicates the hier-
archical decomposition of items (a
method belonging to a class, defined in
a file, or belonging to project).

■ Table “Metric” stores the list of metrics
(LOC, lines of comments, cyclomatic
number, and so on). These are metrics as
defined by the tools, not by the GQM
metrics.

■ Table “Measure” stores the values, which
are related to a metric and to a component.

Exploiting multiple data sources
We can see that the combination of the

data made available by the integration with
the SCM tool and the data extracted from
the metrics tools permits sophisticated analy-
sis. For instance, we obtained the number of
faults per component from the SCM tool and
the complexity of every method from the
metrics tools. We can then easily compute
each component’s average complexity and
size based on the methods’ complexity and
size and the known composition relations.
Figure 3 shows how we can analyze the cor-
relation of the number of faults with both
size and complexity.

We did not apply data extraction from
metrics tools at Pirelli Cavi, because the tool’s
required extensions became available too late.
Instead, we tested it in a research project at
CEFRIEL. In this project, the effort dedicated
to manual data extraction and conversion
was about one personhour for every 300
Kbytes of code. The same work using the
GQM tool’s new facilities took just a few
minutes for the whole project code. In large
real-world projects, the saved effort could
easily be a relevant fraction of the develop-

M a y / J u n e 2 0 0 0 I E E E S O F T W A R E 59

GQM
database

GQM tool

Correlation of
components'

faultiness
with size and
complexity

Size and
complexity of

each component

SCM
repository

Number of
faults per

component

Metrics tool
Source
code

properties

Figure 3. Use of data
from different
sources.

ment time. You can find technical details not
reported here for space reasons elsewhere.4

Results
Pirelli Cavi received valuable indications

from the measurement process described in
this article. However, I focus on the measure-
ment tool and process, not on the defined
metrics, the data, or the data analysis’s poten-
tial consequences. I’ve outlined several inter-
esting results concerning the process.

A more efficient process
The techniques described earlier permit

automatic extraction of a relevant fraction
of the required data. This implies that (after
a simple set-up) the cost of data extraction
was virtually null. Of course, this applies
only to the metrics that you can extract from
the SCM tool, the metrics tools, and other
ready-to-use sources. You must obtain the

remaining data by other means (for exam-
ple, interviews), which are less amenable to
automation. The savings derived from auto-
matic data collection affect the measurement
campaign’s overall cost to an extent that de-
pends on the nature of the GQM plans.

It is important to underline that automat-
ing data collection not only saves effort, but
guarantees collection timeliness and accuracy.

A tool’s availability also impacts the pro-
cess. Early GQM plan formalization allows
prompt goal verification and evaluation.
Moreover, as knowledge about the observed
process and product increases, you can easily
modify the GQM plans, while keeping control
of the plan’s completeness and consistency.

Online feedback
Feedback sessions form a vital part of the

GQM process. The GQM team meet with
developers to agree on data interpretation

6 0 I E E E S O F T W A R E M a y / J u n e 2 0 0 0

This sidebar provides more information on various tools
and environments related to the Goal Question Metrics
process.

Software Metrics Tools
Several commercial tools (see www.pitt.edu/~ddarcy/

isprof/metrics.html) support measurement of source code static
properties (such as the number of lines of code or the cyclo-
matic number), both for traditional and object-oriented pro-
gramming languages. Such tools typically perform a fixed set
of measurements and rely on the file system to store results. Of-
ten results are generated in relatively easy to read or browse
formats (such as formatted text or HTML).

In practice, these tools can easily extract metrics from code,
but they do not typically support any methodology nor any
data interpretation. The user must know why the extracted
measurements are needed and how to treat them.

NonGQM Measurement Environments
The Emerald (Enhanced Measurement for Early Risk As-

sessment of Latent Defects) environment was designed to im-
prove software reliability in the telecommunications domain.1

Emerald supports measurement of software code and analysis
of collected data according to given quality models. Particu-
larly, Emerald incorporates the Datrix code metrics tool for
measuring static attributes of source code such as size, com-
plexity, structuredness, readability, testability, and so on.
Emerald’s approach mainly differs from GQM’s in two ways:

■ It adopts an ad hoc methodology (particularly suited for
the telecommunications industry).

■ It pursues a fixed goal (software reliability), requiring a
fixed set of metrics and sources (the code). GQM can be

applied to any goal, involving any set of metrics, includ-
ing Emerald’s, or data sources.

Squid is a methodology and tool to plan and control soft-
ware quality during development.2 Although measures play
an important role in Squid, the method focuses on defining
the quality model for the considered software product. Squid
requires a model of the product and the process and that
these models be linked to the quality model. Measures apply
to the attributes of the product and process that affect quality
characteristics. Thus, Squid provides a clear framework to
support software measurement. However, the approach draws
on traditional measurement and analysis methods.

GlobalManager (www.globalmanager.org) collects and dis-
plays data generated by software development. Here, the em-
phasis is on the fast availability of data to support project
management. To achieve this goal, GlobalManager imports
data from several development tools. However, GlobalMan-
ager does not offer methodology guidance; it just provides
data and facilities to display and analyze them, leaving the
user with the task of data manipulation and interpretation.

Configuration Management Tools
Configuration management tools are valuable data sources.

In fact, modern SCM tools not only store products of the devel-
opment process, but they also tend to be aware of their state
and state transitions, development activities (such as product
building), and communication (for example, notification of rele-
vant events). All these data are very important to quantitatively
characterize the development process.

Nevertheless, SCM are not normally equipped with data
collection facilities. The user must extract the needed informa-
tion from the underlying repository—typically a commercial

Research and Practice

and to verify consistency of the GQM plan
with the actual development process. Meet-
ing preparation and participation requires a
substantial effort, which limits the fre-
quency of feedback sessions (typically a
half-day meeting every six to eight weeks).
Thus, interesting results might be disclosed
several weeks after they become available.

The mechanisms presented earlier permit
faster and cheaper feedback sessions, be-
cause of the immediate availability of most
data with negligible cost. Moreover, the
risk of overlooking interesting data is al-
most eliminated by the possibility of speci-
fying consistency queries: for example, data
that do not conform to the baseline hy-
potheses are natural candidates for discus-
sion. Quality targets in Squid (see the “Re-
search and Practice” sidebar) offer a similar
functionality.

In the best case, developers could use di-

rectly the GQM tool to browse as soon as
metrics’ values become available. However,
traditional feedback sessions are still neces-
sary whenever several people need to dis-
cuss the interpretation of collected data.

Increasing GQM process effectiveness
The GQM process has been criticized for

being not repeatable and for being nontermi-
nating.5 Using supporting tools helps in this
respect. For instance, with the use of a tool,
you can quite naturally develop a library of
goals, questions, and metrics that are consis-
tent with the given environment and that you
can reuse across the organization—thus help-
ing the convergence toward common consol-
idated measurement programs.

Moreover, reusing existing collections of
questions and metrics helps limit the meas-
urement plan’s scope. For instance, you can
attach documentation to a question explain-

M a y / J u n e 2 0 0 0 I E E E S O F T W A R E 61

RDBMS (relational database management system). Reporting
facilities often provide the user with limited support in this
task.

GQM-Specific Tools
The first users of the GQM method soon discovered that

developing GQM plans can be quite complex. Therefore, the
first tools that provided specialized support to the GQM
method (such as GQMaspect, GQM DIVA, and TEAM) fo-
cused on defining GQM plans. Later, some of these tools
evolved to let users simultaneously view definitions of the met-
rics and their values, allowing a first rough interpretation of
the data.

Most GQM-specific tools interface with commercial data-
base management systems for data storage. First-generation
GQM-specific tools did not pay special attention to data col-
lection; they expected that someone would eventually feed
the database with the proper data. Figure A depicts this
situation.

More modern GQM-specific tools such as MetriFlame3 can
import data from different data sources through source-spe-
cific converters. A converter is a stand-alone program that
connects to the desired data source (for instance, Lotus Notes),
reads the data, and saves them into a MetriFlame-compatible
format. Although this mechanism saves the time needed to
manually convert and enter the data, the possibility of effec-
tively decreasing the GQM process’s cost depends on

■ whether the data were entered manually in the original
location for the GQM plan, or were already available for
other reasons and

■ how much elaboration is needed to fit retrieved data in
the GQM plan.

What generally distinguishes the GQM tool is its current
ability to manage both metrics definitions and the correspon-
ding data. This function permits using a consolidated method-
ology for defining flexible measurement plans while data are
made accessible from the development tools in a reliable, or-
dered, and economic way.

References
1. J.P. Hudepohl et al., “Emerald: Software Metrics and Models on the Desk-

top,” IEEE Software, Vol. 13, No. 5, Sept. 1996, pp. 56–60.

2. J. Bøegh et al., “A Method for Software Quality Planning, Control, and Eval-
uation,” IEEE Software, Vol. 16, No. 2, Mar./Apr. 1999, pp. 69–77.

3. P. Parviainen, J. Järvinen, and T. Sandelin, “Practical Experiences of Tool
Support in a GQM-Based Measurement Programme,” INSPIRE II, Process
Improvement, Training and Teaching for the Future, C. Hawkings et al.,
eds., The British Computer Society, Wiltshire, UK, 1997.

R

GQM toolGQM
database

Paper
forms

E-mail
messages

Filter/
converter

Spreadsheets

Manual data
collection

procedures

Company
database

Measurement team

?

Figure A. Traditional data input.

ing why the current set of associated metrics
suffices or reminding which other metrics
have failed to provide meaningful results.

The underlying database is a valuable
reference point for termination. In fact, re-
finement of the GQM plan can stop when
you can link every metric to a database
query. Thus, you can assess the feasibility
of metrics against the database, whose
schema must in turn be consistent with the
conceptual model of the software artifacts
and with the software process being con-
sidered.

Increasing metrics acceptance
Several authors have documented the

problems that arise in the practical appli-
cation of metrics in industrial settings. For
instance, the Software Measurement
Guidebook developed at the Software En-
gineering Laboratory remarks that data
collection should be a minor activity; that
measurement data are fallible, inconsis-
tent, and incomplete; and that personnel
treat measurement as an annoyance, not a
significant threat.6 Shari Lawrence Pfleeger
reports from her experience at the Contel
Technology Center: “metrics are welcome
when they are clearly needed and easy to
collect and understand.”7

Adding automated support to the GQM
process addresses the observations reported
earlier:

■ Much data is collected automatically,
with no required effort.

■ Limited human intervention minimizes
the errors in data collection due to an-
noyance, oversights, imprecision, and
so on.

■ Metrics to be collected are defined pre-
cisely—both at the conceptual level (us-
ing GQM notation) and at the data level
(using SQL).

■ The focus is on the measurement results
(which are available cheaply and
timely), not on the collection of data,
which is largely automatic.

This technique helps make the GQM
process cheaper and more repeatable, sys-
tematic, and widely applicable. It satisfies
several of the conditions Ross Jeffery and
Mike Berry8 identified for the success of
metrics programs.

In the work presented here, the definition
of the GQM plan, the process modeling,
and the product modeling proceed in

parallel, using independent tools. The GQM
team had to keep the GQM plan definition
consistent with the models. A possible fu-
ture improvement might be to integrate the
GQM tool with modeling tools to make it
easier to maintain consistency.

I did not give much attention to precisely
assessing the automated GQM process’s cost
in this article. From a qualitative point of
view, the tool’s benefits in terms of savings,
data reliability, and general acceptance of the
measurement process are clear. Particularly, in
this case, the measurement program would
hardly have been possible at all without auto-
mated data collection because the manage-
ment would not have accepted a regular
GQM process’s cost. Future controlled exper-
iments will provide a precise quantification.

Another minor limitation of the presented
approach is that the user must manually launch
the measurement programs. Future GQM tool
enhancements will let the user control the met-
rics tools through the GQM tool.

Acknowledgments
I thank the people at Pirelli Cavi for contributing

essential information on the T31 product and its de-
velopment process. Thanks to the many students who
helped with the software’s implementation required to
carry out the described work. The GQM tool’s first
release resulted from several persons’ effort, including
Alfonso Fuggetta, Sandro Morasca, and people from
Compaq Italy.

References
1. V. Basili, G. Caldiera, and D. Rombach, “Goal/Ques-

tion/Metric Paradigm,” Encyclopedia of Software Engi-
neering, Vol. 1, J.C. Marciniak, ed., John Wiley &
Sons, New York, 1994.

2. R. van Solingen and E. Berghout, The Goal/Question/
Metric Method, McGraw-Hill, New York, 1999.

3. A. Fuggetta et al., “Applying G/Q/M in an Industrial
Software Factory,” ACM Trans. Software Eng. and
Methodology, Vol. 7, No. 4, Oct. 1998, pp. 411–448.

4. L. Lavazza, Providing Automated Support for the GQM
Measurement Process, Tech. Report RT98005, CEFRIEL,
Milan, Italy, Sept. 1998; www.cefriel.it/Se/Resource/
metrics.

5. D.N. Card, “What Makes for Effective Measurement?”
IEEE Software, No. 5, Nov. 1993, pp. 94–95.

6. Software Measurement Guidebook, Tech. Report SEL-
94-102, Software Engineering Laboratory, NASA, God-
dard Space Flight Center, 1995.

7. S.L. Pfleeger, “Lessons Learned in Building a Corporate
Metrics Program,” IEEE Software, No. 3, May 1993,
pp. 67–74.

8. R. Jeffery and M. Berry, “A Framework for Evaluation
and Prediction of Metrics Program Success,” Proc. First
Int’l Software Metrics Symp., IEEE Computer Soc. Press,
Los Alamitos, Calif., 1993.

6 2 I E E E S O F T W A R E M a y / J u n e 2 0 0 0

About the Author
Luigi
Lavazza is
a senior re-
searcher at
CEFRIEL (Center
for Research
and Education
in Information
Technology) and

an assistant professor at Politecnico di Mi-
lano, Department of Electronics and Infor-
matics. His research interests include ad-
vanced and process-centered software en-
gineering environments, databases for
software engineering, object-oriented
technology, software process modeling,
measurement and improvement, and re-
quirements engineering. He graduated in
electronic engineering from the Politec-
nico di Milano. Contact him at Politecnico
di Milano, Dip. di Elettronica e Infor-
mazione, Piazza Leonardo da Vinci, 32,
20133 Milano, Italy; lavazza@elet.
polimi.it; www.cefriel.it/~lavazza.

