
A Conceptual Basis for Feature Engineering

C. Reid Turner,1 Alfonso Fuggetta,2 Luigi Lavazza,2 and Alexander L. Wolf 1

1Department of Computer Science 2Dipartimento di Elettronica e Informazione
University of Colorado Politecnico di Milano
Boulder, CO 80309 USA 20133 Milano, Italy
freid,alwg@cs.colorado.edu ffuggetta,lavazzag@elet.polimi.it

ABSTRACT

The gulf between the user and the developer perspectives leads to di�culties in producing

successful software systems. Users are focused on the problem domain, where the sys-

tem's features are the primary concern. Developers are focused on the solution domain,

where the system's life-cycle artifacts are key. Presently, there is little understanding of

how to narrow this gulf.

This paper argues for establishing an organizing viewpoint that we term feature engineer-

ing. Feature engineering promotes features as �rst-class objects throughout the software

life cycle and across the problem and solution domains. The goal of the paper is not

to propose a speci�c new technique or technology. Rather, it aims at laying out some

basic concepts and terminology that can be used as a foundation for developing a sound

and complete framework for feature engineering. The paper discusses the impact that

features have on di�erent phases of the life cycle, provides some ideas on how these

phases can be improved by fully exploiting the concept of feature, and suggests topics for

a research agenda in feature engineering.

A. Fuggetta and L. Lavazza are also with CEFRIEL (http://www.cefriel.it). The work of A. Fuggetta was supported

in part by CNR. The work of A.L. Wolf was supported in part by the Air Force Materiel Command, Rome Laboratory,

and the Defense Advanced Research Projects Agency under Contract Numbers F30602-94-C-0253 and F30602-98-2-

0163. The content of the information does not necessarily reect the position or the policy of the U.S. Government

and no o�cial endorsement should be inferred.





1 Introduction

A major source of di�culty in developing and delivering successful software is the gulf that exists

between the user and the developer perspectives on a system. The user perspective is centered in the

problem domain. Users interact with the system and are directly concerned with its functionality.

The developer perspective, on the other hand, is centered in the solution domain. Developers are

concerned with the creation and maintenance of life-cycle artifacts, which do not necessarily have a

particular meaning in the problem domain. Jackson notes that developers are often quick to focus

on the solution domain at the expense of a proper analysis of the problem domain [18]. This bias is

understandable, since developers work primarily with solution-domain artifacts. Yet the majority

of their tasks are motivated by demands emanating from the problem domain.

Looking a bit more closely at this gulf in perspectives, we see that users think of systems in terms

of the features provided by the system. Intuitively, a feature is a coherent and identi�able bundle

of system functionality that helps characterize the system from the user perspective. Users report

defects or request new functionality in terms of features. Developers are expected to reinterpret

such feature-oriented reports and requests into actions to be applied to life-cycle artifacts, such as

modifying the appropriate set of implementation �les. The easier the interpretation process can

be made, the greater the likelihood of a successful software system. The key, then, is to gain a

better understanding of the notion of feature and how that notion can be carried forward from the

problem domain into the solution domain.

As an illustration of the central importance of features, consider the software in a large, long-

lived system such as a telephone switch. This kind of system is composed of millions of lines of

code, and includes many di�erent types of components, such as real-time controllers, databases, and

user interfaces. The software must provide a vast number of complex features to its users, ranging

from terminal services, such as ISDN, call forwarding, and call waiting, to network services, such

as call routing, load monitoring, and billing.1 Somehow, the software that actually implements the

switch must be made to exhibit these features, as well as to tolerate changes to the features in a

cost-e�ective manner. Bell Laboratories, for example, developed a design in the solution domain

for its 5ESSR switch software by following a layered architectural style [5]. This was supposed to

result in a clean separation of concerns, permitting features to be more easily added and modi�ed.

Despite the continuing interest in the notion of feature, to date there has been little work

1Note that from the perspective of a switch builder, network services are not simply internal implementation

functions, but are truly system features, since they must be made available to external organizations, such as telecom-

munications providers.

1



speci�cally addressing its support throughout the life cycle. Nevertheless, one does �nd the notion

used in several relevant, if limited, ways.

� In domain analysis and modeling, the activity of feature analysis has been de�ned to capture

a customer's or an end user's understanding of the general capabilities of systems in an

application domain [21, 30]. Domain analysis uses the notion of features to distinguish basic,

core functionality from variant, optional functionality [14]. Although features are an explicit

element of domain models, their connection to other life-cycle artifacts is e�ectively non-

existent.

� There has been work on so-called requirements clustering techniques [17, 25], which would

appear to lend itself to the identi�cation of features within requirements speci�cations. But

they do not address the question of how those features would be reected in life-cycle artifacts

other than requirements speci�cations and in a restricted form of design prototypes.

� Cusumano and Selby [8] describe the strong orientation of software development at Microsoft

Corporation toward the use of feature teams and feature-driven architectures. That orienta-

tion, however, has more to do with project management than with product life-cycle artifacts

and activities. Cusumano and Selby o�er no evidence that the notion of feature has been

driven throughout the development process, although doing so would seem natural in such a

context.

� Several researchers have studied the feature interaction problem, which is concerned with how

to identify, prevent, and resolve conicts among a set of features [1, 4, 15, 23, 35]. The

approaches identi�ed in this literature do not provide insight into the role of features across

the full range of life-cycle activities and the ability of features to span the problem and solution

domains.

� Automatic software generation is based on an analysis of a domain to uncover reusable compo-

nents [3, 31]. The components are grouped into subsets having the same functional interface;

a complete system is created by choosing an appropriate element from each subset. The

choice is based on the \features" exhibited by the elements. Here, the term feature is essen-

tially restricted to extra-functional characteristics of a component, such as performance and

reliability. Functionally equivalent systems having di�erent extra-functional characteristics

can then be automatically generated by specifying the desired features|that is, the extra-

functional characteristics. Although this work represents an important element in support

of features, it needs to be extended to encompass the generation of functionally dissimilar

systems through selection of functional characteristics.

Thus, there is a growing recognition that features act as an important organizing concept within

the problem domain and as a communication mechanism between users and developers. There

has also been some limited use of the concept to aid system con�guration in the solution domain.

There is not, however, a common understanding of the notion of feature nor a full treatment of its

use throughout the life cycle.

2



We have set out to develop a solid foundation for the notion of feature and, more importantly, for

carrying a feature orientation from the problem domain into the solution domain. We term this area

of study feature engineering. The major goal behind feature engineering is to promote features as

\�rst-class objects" within the software process, and thus have features supported in a broad range

of life-cycle activities. These activities include identifying features in requirements speci�cations,

evaluating designs based on their ability to incorporate new and modi�ed features, understanding

the relationship between a software architecture and feature implementation mechanisms, uncov-

ering feature constraints and interactions, and con�guring systems based on desired feature sets.

Features are thus an organizational mechanism that can structure important relationships across

life-cycle artifacts and activities.

This paper proposes some basic concepts for feature engineering and evaluates the potential

impact of this discipline on software life-cycle activities. It is based on our experience in applying

feature concepts to the modeling of several software systems, including the software of an ItalTel

telephone switch, and in evaluating the support for a feature orientation o�ered by the leading

commerical con�guration management systems. This paper does not, however, attempt to report

on particular solutions to problems in software engineering, but rather to articulate a framework

within which solutions might be developed and assessed. Therefore, this paper should be considered

a �rst step toward the complete and detailed de�nition of feature engineering and of its relationship

with other domains of software engineering.

In the next section we discuss a typical entity-relationship model of life-cycle artifacts and

show how features can be incorporated into that model. We then describe the application of

feature engineering to a variety of life-cycle activities. In Section 4 we present a study of the

Italtel telephone switch software that serves as an initial validation of some of the principal ideas

developed in this paper. We conclude with our plans for future research in feature engineering.

2 The Role of Features within the Process

The term \feature" has been in common use for many years. In 1982, for instance, Davis identi�ed

features as an important organizational mechanism for requirements speci�cations.

\. . . for systems with a large number of internal states, it is easier, and more natural,

to modularize the speci�cation by means of features perceived by the customer." [9]

In a recent survey on feature and service interaction in telecommunication systems, Keck and Kuehn

mention a similar de�nition developed by Bellcore.

3



\The term feature is de�ned as a `unit of one or more telecommunication or telecom-

munication management based capabilities a network provides to a user'. . . " [22]

Unfortunately, despite these attempts to precisely de�ne the notion of feature, the term is often

interpreted in di�erent and somewhat conicting ways. Here, we present and evaluate three can-

didate de�nitions that are intended to capture the range of interpretations commonly used in the

software engineering community. The �rst de�nition refers to the interpretation of the term feature

as o�ered by most of the scienti�c literature on the subject, including the two examples above.

The other two de�nitions represent other interpretations of the term feature, as used especially

by practitioners. Our intent here is to emphasize the di�erences among these interpretations, to

indicate how they are interrelated, and, therefore, how they can be eventually reconciled.

2.1 An Informal De�nition

At the most abstract level, a feature represents a cohesive set of system functionality. Each of the

three candidate de�nitions identi�es this set in a di�erent way.

1. Subset of system requirements. Ideally, the requirements speci�cation captures all the im-

portant behavioral characteristics of a system. A feature is a grouping or modularization of

individual requirements within that speci�cation. This de�nition emphasizes the origin of a

feature in the problem domain.

2. Subset of system implementation. The code modules that together implement a system exhibit

the functionality contributing to features. A feature is a subset of these modules associated

with the particular functionality. This de�nition emphasizes the realization of a feature in

the solution domain.

3. Aggregate view across life-cycle artifacts. A feature is a �lter that highlights the life-cycle

artifacts related to a speci�c functionality by explicitly aggregating the relevant artifacts,

from requirements fragments to code modules, test cases, and documentation. This de�nition

emphasizes connections among di�erent artifacts.

Features are a user-centered view of a system's functionality and, therefore, originate in the problem

domain, not the solution domain. The �rst de�nition captures this critical aspect. A feature is a

set of individual requirements within a requirements speci�cation for the system. The membership

criterion for this set is a direct relationship to a single, identi�able functionality.

The second of these de�nitions has an inherent weakness; accepting it implies that a feature does

not exist until it is implemented. Therefore, it de�nes what we refer to as a feature implementation.

4



There are many possible implementations for the same feature. Certainly it is possible to consider

a feature independently of its realization in a particular system.

The third de�nition implies that a feature will change simply because an associated artifact,

such as its documentation, changes. A feature should remain a feature regardless of how it is

implemented, documented, or tested. In addition, the groupings of artifacts made explicit in the

third de�nition can be inferred by using the �rst de�nition, given an appropriate model of the

relationships among life-cycle artifacts (e.g., PMDB [26]).

Given these arguments, we employ the �rst de�nition for the purposes of this paper. We use

the de�nition as a core concept to develop a model of the artifacts that are created during software

engineering activities. This model is not intended to be de�nitive of all life-cycle artifacts. Rather,

it is intended to be suggestive of their relationships. Particular development environments may

de�ne the artifacts and relationships somewhat di�erently in detail, but they will nonetheless be

compatible with them in spirit. The model allows us to reason about the relationship of features to

other life-cycle artifacts, and to articulate and illustrate the bene�ts derived from making features

�rst class.

2.2 Features and Software Life-Cycle Artifacts

Figure 1 shows a simple entity-relationship diagram that models the role of features within a soft-

ware process. The model derives from the concepts typically used in software engineering practice

and commonly presented (often informally) in the literature. The entities, depicted as rectangles,

correspond to life-cycle artifacts. The relationships, depicted as diamonds, are directional and have

cardinality. Despite being directional, the relationships are invertible. Again, we point out that this

is just one possible model, and it is just meant to be illustrative of the concepts we are exploring.

It is not meant to be a complete model or to constitute the novel contribution of the paper. We

have derived it by studying available literature on the subject (e.g., PMDB [26]) and by analyzing

our own experiences on several industrial projects, one of which is discussed in Section 4.

The model de�nes some of the key aspects and properties that are relevant to our understanding

of the role of features in the life cycle, and are further explored in this paper.

1. Features as life-cycle entities are meant to bridge the problem and solution domains.

2. Features are a means to logically modularize the requirements.

3. The documentation of a feature is a user-oriented description of the realization of that fea-

ture within the solution domain. This contrasts with, and complements, the user-oriented

description of a feature as a set of requirements within the problem domain.

5



M

N

Tests

M

NM NM N

1

Requirements
Fragment

Design
Specification

Design
Fragment

SubsystemModule

Specification
Requirements

Implements

Reflects

Documents

Composes

Composes

Composes

Tests

Composes

Composes

Composes

UsesUses

1 N

M N

M

N

1

N

MN

N

1

1N

M

N

N

1

1 N
Fragment

Documentation

User
Documentation

FeatureSystem
Test Set

System
Test Case

Test Set
Unit

Composes

N

Test Case
Unit

Composes

1

N

Tests

Test Set
Integration

Test Case
Integration

Depends On

M N

Problem Domain

Solution Domain

Figure 1: Common Life-Cycle Entities and Relationships.

4. The distinction between the problem and solution domains helps illuminate the fundamentally

di�erent orientations among the various testing activities in the life cycle. For example, system

tests are focused on user-visible properties and are therefore conceived of, and evaluated,

within the problem domain.

5. The connection between requirements and architectural design is di�cult, if not impossible, to

formalize beyond the notion that designs reect the requirements that drive them. However,

if those drivers are features, then there is hope for a better tie between the problem and

solution domains.

Two less immediate, but no less important, points can also be seen in the model. First, while

design artifacts are directly related to features, the relationships between features and the deeper

implementation artifacts are implicit. For example, a developer might want to obtain all mod-

ules associated with a particular feature to make a change in the implementation of that feature.

Satisfying such a request would require some form of reasoning applied to the relevant artifacts

and relationships. In general, this reasoning would occur at the instance level, as illustrated in

Figure 2 and explained below. Second, there are two distinct levels at which features interact. In

6



System
Test Case

Design
FragmentFragment

Requirements
Module

Figure 2: Instances of Entities and Relationships.

the problem domain, features interact by sharing requirements or by simply depending on each

other for particular services. Similarly, features can interact in the solution domain through shared

subsystems and modules or through use dependencies. Although similar in nature, they are quite

di�erent in their rami�cations. The absence of an interaction in the problem domain does not imply

the absence of an interaction in the solution domain, which gives rise to the implementation-based

feature interaction problems [15]. The reverse is also true, but less obvious, since it arises from the

duplicate-then-modify style of code update. Such a style results in a proliferation of similar code

fragments that are falsely independent (so-called self-similar code [7]).

2.3 The Instance Level

If we populate the model of Figure 1 and examine it at the instance level, additional insights into

features are revealed. Figure 2 depicts this level for the instances of entities and relationships

of a hypothetical system. The �gure is simpli�ed somewhat by only considering a subset of the

entities. The shaded dots represent individual instances of the entity types named in the columns.

The unlabeled ovals within a column represent instances of aggregate entity types, which are

de�ned through the Composes relationship in Figure 1. In particular, the ovals represent, from

left to right, test sets, features, design speci�cations, and subsystems. For example, there are ten

requirements fragments and four features depicted in the �gure. Notice that aggregate artifacts

are not necessarily disjoint. So, for example, the top two features share the fourth requirement

fragment. The semantics of the arrows are given by the relationships de�ned in Figure 1. Recall

7



that they are invertible.

An instance diagram forms the basis for reasoning about relationships across the life cycle.

There has been a signi�cant amount of work in developing, maintaining, and even discovering the

data for such representations, but none has involved the use of features as a central element. We

advocate a representation that allows one to ask questions that include the following.

� Which features were a�ected by this change to a requirement?

� Which modules should a developer check out to make a change to this feature?

� Which features were a�ected by this change to a module?

� Which test cases will exercise this feature?

� Which modules are needed to con�gure the system for these two features?

For instance, it is clear that di�erent features are able to share requirements speci�cations. A shared

requirement from the switch example could be both the call-forwarding and call-screening features

signaling completion with an aural tone. These relationships lead to a deeper set of questions

regarding the role of features in a particular system. Answering the questions that are posed here

implies the existence of a number of many-to-many relationships. Researchers have investigated

some those relationships [10, 27] and proposed solutions that would answer some of the questions.

Since features are a natural stucturing of the requirements speci�cation, organizing the relationships

around features holds promise for making such e�orts more valuable across life-cycle activities.

The instance diagram also provides useful information for evaluating the structure of the system.

For example, we can see that the two features represented by the two topmost ovals in the second

column share a requirement, which means that a change to that requirement may potentially impact

both features. Further, we can see that despite this shared requirement, the feature represented by

the topmost oval is reected in a single design fragment, which is in turn implemented in a single

module. This implies a signi�cant separation of concerns that might make it easier to modify the

feature. We can also see that the features represented by the two bottommost ovals do not interact

at the requirements level, but do in fact interact at the subsystem level. Finally, we can see that

there are two subsystems forming part of the system whose designs are not related to any particular

feature. This last observation deserves further discussion.

2.4 The System Core

If a system's functionality is viewed, as we advocate, as a set of features then it is natural to ask

the following question: \Is a system completely composed of the set of features it provides?" It

8



is clear that systems include underlying componentry to support their features. This underlying

componentry, which we call the core, arises solely in the solution domain to aid development of

features. Users are generally not concerned with the core, and therefore it is not directly reected

in the requirements. A rather obvious core is evident in the example instance diagram of Figure 2.

At the module level, the core is composed of the bottom two subsystems, which have no tie back

to any feature at the requirements level, other than in their use by subsystems that do have such

a tie.

Chen, Rosenblum, and Vo [6] make a similar observation about the existence of feature com-

ponents and core components, but their de�nition is based on test coverage. In particular, core

components are those that are exercised by all test cases, whereas feature components are those

exercised by only a subset of the test cases.

In a sense, then, the concept of feature is helping us to de�ne the concept of core|the core

is what remains of the system in the absence of any particular feature. Given that we would like

maximum exibility in both modifying features and in selecting the set of features in any speci�c

con�guration of a system, then this de�nition identi�es something quite signi�cant. In fact, what

it provides is the conceptual foundation for the role of software architecture in software system

development. An architecture provides the core functionality of the system within the solution

domain that supports the functionality of the system desired in the problem domain. Of course,

an architecture must embody assumptions about the features it is intended to support, and the

degree to which it correctly anticipates the needs of those features will determine the quality of

that architecture.

3 Features and Life-Cycle Activities

The artifacts and relationships discussed in the previous section are created and maintained through

various life-cycle activities. In this section we present a brief and high-level survey of what we see as

the impact that feature engineering can have on several of those many activities. Our intention is to

suggest some of the broad rami�cations of feature engineering, rather than to attempt a complete

coverage of the topic.

3.1 Requirements Engineering

Requirements engineering includes activities related to

\. . . identi�cation and documentation of customer and user needs, creation of a doc-

9



ument that describes the external behavior and associated constraints that will satisfy

those needs, analysis and validation of the requirements document to ensure consistency,

completeness, and feasibility, and evolution of needs." [16]

Research in requirements engineering is primarily focused on formulating improved notations and

analyses, and on developing methods and mechanisms for elicitation, rationale capture, and trace-

ability. Requirements engineering is the starting point for feature engineering, since it is concerned

with the creation and maintenance of the raw material from which features are composed. Require-

ments analysis must include the identi�cation of the set of requirements fragments that comprise

each feature, as well as the various dependencies that might exist among the features. Indeed,

several requirements methods have been proposed that are potentially useful in the development

of feature identi�cation techniques.

Domain analysis is a method for understanding requirements in a particular problem domain.

The product of domain analysis is a domain model, which captures the essential entities in a domain

and the relationships among those entities. Research in the area of domain analysis is focussed on

the development of better methods for eliciting and representing domain models. In addition, for

stable domains, automated software generation techniques are being sought that can exploit the

domain models. These techniques would provide reuse of components that implement the entities

de�ned in the domain model.

Several domain analysis methods, including FODA [21, 30], use the term feature to refer to the

capabilities of systems in a domain. They typically seek to distinguish the features that represent

basic, core functionality from those that represent variant, optional functionality. A good example

of this approach is the domain modeling method and environment of Gomaa et al. [14]. The

environment is used to generate object speci�cations for target systems based on a domain model.

The object speci�cations are therefore artifacts in the solution domain. Clearly, because the object

speci�cations are generated, their relationship to features can be easily maintained, although this

notion of feature is not well developed.

Domain analysis plays a role in the software generation work of Batory and O'Malley [3] and

of Sitaraman [31], where they analyze a domain to uncover reusable components. The components

are grouped into subsets (realms, in the terminology of Batory and O'Malley) having the same

functional interface; a complete system is created by choosing an appropriate element from each

set. The choice is based on the \features" exhibited by the elements. Here, the term feature is

essentially restricted to extra-functional characteristics of a component, such as performance and

reliability. A system can then be automatically generated by specifying the desired extra-functional

10



characteristics. Although this work represents an important step toward feature engineering, it

requires a fuller treatment of the concept of feature. In particular, if feature speci�cations also

represented functional di�erences, then the generation process would allow for the creation of

functionally di�erent systems.

In addition to domain analysis techniques, there are also a number of other requirements meth-

ods that have been developed to represent and structure requirements. Representation and struc-

turing of requirements are key elements of a feature orientation, but the methods discussed below

would need to be enhanced in order to be appropriate for feature engineering.

Use cases [13, 20] are a method for representing requirements that have become quite popular

within the object-oriented analysis and design community. Use cases are similar to features to the

extent that they represent requirements and some relationships among those requirements, such

as \uses" and \extends". However, features support additional relationships, such as \conicts",

\competes", and \constrains", not currently represented by use cases. Moreover, features capture

non-functional requirements also not currently expressable through use cases.

Quality Function Deployment (QFD) [11] is a requirements and design process aimed at iden-

tifying customer desires and related technical requirements. QFD exploits some notion of feature,

but does not o�er any speci�c aid to support the representation and management of features during

the requirement engineering phase, nor throughout the software development process.

Hsia and Gupta [17] have proposed an automated technique for grouping requirements speci�ca-

tions. Their purpose is to support incremental delivery of system functionality through progressive

prototypes. The cohesive structures that Hsia and Gupta seek to identify are abstract data types

(ADTs) for objects in the problem domain. However, their goal of delivering ADT-based prototypes

transcends requirements analysis and forces what amount to design choices.

Palmer and Liang [25] have described a somewhat di�erent requirements clustering technique.

They de�ne the problem as an e�ort to \aggregate a set of N requirements into a set of M

requirement[s] clusters where M � N". This is a precise statement of the goal of identifying

features. Their motivation, however, is to detect errors and inconsistencies within requirements

clusters, and therefore the organizing principle behind their clusters is similarity of the requirements

within a cluster. In other words, they seek to �nd sets of redundant requirements in order to analyze

the elements of the set for consistency. For feature engineering purposes, we instead advocate that

the organizing principle of a cluster should be relevance of the constituent requirements to the

desired properties of the feature; the issue of redundancy and consistency is orthogonal, and so a

clustering for that purpose, while important, is also orthogonal.

11



To conclude this discussion of requirements engineering, let us return to the feature interaction

problem in telecommunications applications mentioned in Section 1. In telephone switch software,

features such as call waiting and call forwarding both relate to the treatment of incoming calls to

a busy subscriber line [2], and thus exhibit overlapping requirements fragments. The identi�cation

of such feature interactions at the requirements phase can help eliminate unanticipated interaction

problems during later phases in the software life cycle. The most common research approach to

this problem is the application of formal veri�cation techniques to system speci�cations, with the

goal of detecting all undesired feature interactions. The critical part of this activity is the sys-

tem speci�cation|that is, the de�nition and application of a speci�cation technique that actually

captures the relevant properties of the system. Jackson and Zave propose DFC [19], a virtual archi-

tecture for representing features that can be dynamically composed to form a con�guration suitable

to provide a speci�c service. From our point of view, features can be represented and handled in

several di�erent ways. In particular, features in DFC are treated as �rst class, and expected to

drive the subsequent model checking activities and the design of the concrete system architecture.

This clearly conforms to our idea of a feature-centric development process.

In general, the fundamental di�culty with requirements engineering in practice today is iden-

ti�ed by Hsia et al.

\For the most part, the state of the practice is that requirements engineering produces

one large document, written in a natural language, that few people bother to read." [16]

Feature engineering holds the promise to make the requirements e�ort more useful by carrying the

results of this e�ort forward to the other life-cycle activities in a disciplined way.

3.2 Software Architecture and High-level Design

Ideally, a requirements speci�cation is a precise statement of a problem to be solved; it should

structure the problem domain as features to be exhibited by an implementation. The software

architecture, on the other hand, is the blueprint for a solution to a problem, structuring the

solution domain as components and their connectors. Researchers in software architecture are

focusing attention on languages for architectural design, analysis techniques at the architecture

level, and commonly useful styles or paradigms for software architectures.

Feature engineering has signi�cant implications for software architecture. One is in relating

the problem-domain structure of features to the solution-domain structure of components and

connectors. Rarely is this mapping trivial. Another implication is that, from the perspective of

12



the user, features are the elements of system con�guration and modi�cation. A high-level design

that seeks to highlight and isolate features is likely to better accommodate user con�guration

and modi�cation requests. Within this context, then, we see at least two mutually supportive

approaches: feature tracing and feature-oriented design methods.

The tracing of requirements to designs has been an area of investigation for many years. The

basic problem is that it is essentially a manual task whose results are di�cult to keep up-to-date

and are prone to errors. One way to mitigate this problem is to raise tracing's level of granularity

from individual requirements fragments to sensible groupings of such fragments|features. We

conjecture that tracing at the feature level is more tractable and, in the end, more useful than

traditional methods.

A somewhat di�erent approach to high-level design than traditional functional decomposition

or object-oriented design methods arises from a focus on features. The starting point for a feature-

oriented design method is an analysis of the intended feature set to gain an understanding of the

features, both individually and in combination. Of particular importance is understanding the

requirements-derived dependencies among the features. If one takes feature prominence as a design

goal, then the top-level decomposition of the architecture should match the decomposition of the

requirements speci�cation into features. At each successive level of architectural decomposition,

the goal should continue to be feature isolation. Points of interaction among features naturally

arise from shared requirements, as well as from the need to satisfy extra-functional requirements,

such as performance. The criteria for creating new components should be to capture explicitly

some shared functionality among some subset of features. In this way, the feature interactions are

caused to distill out into identi�able components.

In the telephone switch, for example, the call forwarding, abbreviated dialing, and direct con-

nection features all require the association of directory numbers with a subscriber line [2]. Each

so-called Switching Module in the architecture (i.e., the module responsible for routing calls) in-

cludes a special database to store such information. Thus, the database, as a design element, is

driven by a speci�c and identi�able set of features. Maintaining this relationship is critical to

understanding how to properly evolve this element without violating some constraint imposed by

a feature.

Combining tracing at the feature level with a design method that leads to modules representing

features and feature interactions should help to illuminate the traditionally obscure relationship

between speci�c features and the design elements supporting them. Moreover, when a request for

a feature change is presented to a developer, that feature can be traced immediately to a design

13



element associated with the feature. Any potentially problematic interactions with other features

become visible through their capture in shared modules representing that interaction.

3.3 Low-level Design and Implementation

Low-level design and implementation are the activities that realize the modules and subsystems

identi�ed in architectural design. While we could postulate a need for feature-oriented implemen-

tation languages, our experience with feature engineering has not lead to the discovery of any

compelling arguments in their favor. The e�ect that feature engineering has on these activities is

more likely felt indirectly through the e�ects on the high-level design and testing activities and

through the contribution of a tool set that makes the relationships across artifacts visible to the

developer.

Nevertheless, a feature orientation frequently exists during implementation. Cusumano and

Selby [8] report that development e�orts for many Microsoft product groups are organized by the

features of their product. Small teams of developers are assigned responsibility for one or more

of those features. Especially complicated features are assigned to stronger teams that include

developers with more experience. This organizational structure built around features extends to

teams assigned responsibility for testing particular features.

Ossher and Harrison [24] discuss a method of extending existing class hierarchies by applying

\extension hierarchies", which would appear to bear some relation to feature engineering at the

implementation level. Goals for this work include reducing modi�cation of existing code and sepa-

rating di�erent extensions. Much like change sets in con�guration management (see Section 3.5),

these extensions can be used as a conceptual mechanism to add functionality to existing object-

oriented systems. Unfortunately, this research describes extensions only at the granularity of object

methods, which seems inappropriate for dealing with complex features such as the call-forwarding

feature of a telephone switch. In addition, the semantic compatibility of combined extensions are

not well understood in this technique, which is a critical need for feature engineering.

A primary bene�t to be gained from concentrating on features as a bridge from the problem

domain to the solution domain is a reduction of the intellectual burden placed on developers when

interacting with the implementation of a system's features. Developers will be able to work with a

feature implementation without having to recreate the mapping from problem-domain artifacts to

solution-domain artifacts, and vice versa.

14



3.4 Testing

Testing is an approach to software veri�cation that involves experimenting with a system's behavior

to determine if it meets expectations. In practice, there are three levels of testing. Unit testing is

used to test the behavior of each module in isolation. Integration testing is used to detect defects

in the interactions among modules at their interfaces. System testing is focused on testing the

complete system as a whole for compliance with the requirements set out by the users, including

the system's intended functionality and performance. System testing is oriented toward the problem

domain, while unit and integration testing are oriented toward the solution domain (see Figure 1).

Feature engineering can have an impact on testing activities by suggesting a somewhat di�erent

organization of test sets than is traditionally encountered. In particular, test sets would be organized

around the feature or features they are intended to test. The telephone switch software, for example,

supports a vast number of features that need to be tested for every release. Having requirements

for each feature provides a basis for testing each feature in isolation. Taking all the feature tests

together, we get the equivalent of a system test set.

Where a feature implementation is con�ned to a single module, tests for that feature amount

to unit tests for the module. Of course, feature implementations frequently involve more than

one module. In this case, feature tests are a mechanism for evaluating module integration. The

connections between features that are highlighted by instance diagrams, such as Figure 2, point out

sets of features that should be tested in combination. This would be useful, for example, in guiding

the testing of modi�cations to the database component of the telephone switch's Switching Module,

which is shared by several features [2]. Such feature-combination tests might detect unwanted

feature interactions.

The feature-oriented organization of test sets can also help to minimize regression testing. This

harks back to the theme of users posing requests in terms of features. If a developer can make a

change to the system with respect to some particular feature, then only the tests related to that

feature (and, possibly, any other features that depend upon that feature) need to be run.

3.5 Con�guration Management

Con�guration management is the discipline of coordinating and managing evolution during the

lifetime of a software system. Traditionally, con�guration management is concerned with maintain-

ing versions of artifacts, creating derived objects, coordinating parallel development e�orts, and

constructing system con�gurations.

15



The vocabulary of existing con�guration management systems is oriented toward solution-

domain artifacts, such as �les, modules, and subsystems. Many of the accepted con�guration

management techniques, such as version management and derived-object creation, should be di-

rectly applied at the feature level. For example, the developers of the telephone switch software

should be able to populate a workspace through a request for a speci�c version of all the artifacts

associated with a particular feature, such as call waiting, by simply identifying the feature, not

each of the individual relevant artifacts. It should also be possible to issue a request to construct a

system where that request can be parameterized by a given set of features. For example, it might

be useful to construct a \compact" release of the telephone switch software that has basic call

processing features but no call waiting or call forwarding features. Another useful capability would

be the delineation of parallel workspaces based on features. For features to become �rst class, they

will have to exist in the models of the systems that are built. This has the potential for raising the

level of abstraction at which developers work from �les to features.

Realizing this expanded role for con�guration management will require feature implementations

to be separately encapsulated and versioned. Bare �les do not appear to be the right abstraction

for this purpose. Change sets [12, 33], on the other hand, show promise as a potentially useful

storage base. In addition, information about feature dependencies at both the speci�cation and

implementation levels will be needed for assembling consistent con�gurations.

3.6 Reverse Engineering

Reverse engineering is the process of discovering the structure and organization of an existing

system from any available artifacts. Typically, such artifacts are limited to those associated with the

implementation, such as source �les. The activities in reverse engineering center on the application

of various analyses techniques to the artifacts in order to reveal internal structure, as well as to

reveal static and dynamic dependencies.

The primary inuence of feature engineering on reverse engineering is to focus the analyses

toward discovering connections to features. In essence, this means recreating the (lost) relationships

in Figure 2. For example, reverse engineering could be used to discover the interactions between

call waiting and call forwarding, or to discover the features that are dependent on the database

component of the Switching Module.

One possible technique would be to broaden the scope of program slicing, following Sloane and

Holdsworth [32], to create a feature slice through the implementation artifacts. A feature slice

would include all of the fragments that contribute to a feature's implementation. Working in the

16



other direction, if a feature test set existed, then observations of test case executions could reveal

the portions of the implementation that were involved in implementing the feature.

4 Case Study: The Software of an Industrial Telephone Software

We recently performed a study of Italtel's telephone switch software in order to validate some of

the ideas presented in this paper against a large and complex software system. Our intent was to

identify features in the system and to evaluate the support that the development process provides

for managing features during the system's evolution.

The software implementing the switch consists of millions of lines of code and thousands of �les.

Each release of the switch incorporates added functionality, while the basic software architecture

remains stable; only small changes are relatively frequent. This is consistent with our view of

software architecture as de�ning the system core (see Section 2.4).

Figure 3 gives a UML [28, 29] model of the software and documentation artifacts of the system.

We developed the model by examining project documents and interviewing project personnel.

Space does not permit us to explain the entire model in detail. Instead, we highlight some relevant

portions of the model.

Requirements for releases are separated into user requirements and release requirements; the

latter dictate concerns related to project management of the release process, such as the schedule

and the assignment of organizational responsibilities. User-visible services are referred to as services.

Services are assigned to project managers who oversee their design, implementation, documentation,

and testing.

Each service is in a one-to-one correspondence to a service requirements document. Service

requirements modularize the functional and project management requirements, documenting the

user-visible service to be added or modi�ed in the release. Thus, the concept of service neatly

corresponds to our notion of a feature, incorporating both the solution-domain orientation and

requirements clustering aspects of our de�nition (see Section 2.1).

Having con�rmed the central role that features play in structuring evolutionary changes to

the software and the assignment of work activities to perform those changes, we next sought to

understand the extent to which the development process exploits the feature-oriented nature of the

software product. It turned out that the development process is organized in a traditional way,

focusing on the artifacts that are produced in every phase of a waterfall-like life cycle. Requirements

documents are written by means of simple word processors and are stored in directories whose

17



Release
Requirements

OR
*

User
Requirements

Service
Requirements

Affects Affects

1..* 1

1..*1

Architectural
Requirements Documents

Module
Architecture Spec.

Affects

1..*

1..*

Subsystem
Architecture Spec.

DocumentsDocuments

*

*

1

Detailed by

1..* 1..*

Functional
Architecture Spec.

Affects

1..*

1..*1..*

1..*Cooperates with

Service

Elementary
service

Function

Documents

Documents

*
*

Affects

Affects

1..*

*

0..*

Component
Architecture Spec.

Component

Implemented by

1..*

1..*

OR

Documents

Affects

*

1..*

Affects

1..*

1..*

Affects *
OR

Functional
Test case

Affects

Tests

Documents

1..*

OR

Affects

1..*

Figure 3: UML Model of Italtel's Telephone Switch Software Artifacts.

structure reproduces the hierarchical structure of the contents. Relationships can be traced in a

top-down fashion by navigating explicit references to the names of the lower-level documents. Only

in a limited number of cases are references represented bidirectionally. As a consequence, it is very

hard to determine to which performances a given function or component contributes.

The tools employed in the project are traditional and general purpose, having no particular

tie to the feature context in which they are employed. We thus set about to investigate how

one such tool, the con�guration management system, could be better integrated into the context.

We �rst de�ned a set of requirements for con�guration management support of a feature-oriented

development process. These requirements address four basic goals of con�guration management.

� Identi�cation: Identify and classify the system artifacts and the relationships among them.

� Control/Process: Control access to system artifacts and ensure that all changes adhere to

18



a desired software process.

� Construction: Determine and build valid product con�gurations.

� Status: Record signi�cant events within a development process and provide information to

track the system's evolution.

For example, the con�guration managment system must identify the set of features currently avail-

able, the set of versions for each feature, the set of modules that implement each feature, and

the set of test cases associated with each feature. The developer must be able to retrieve all the

artifacts associated with each feature and to guarantee some consistency constraints when changes

are made to those artifacts.

We next developed an evaluation framework that could be used to indicate the e�ort involved

in realizing a feature orientation within a given con�guration management system. In particular,

for each activity and structure identi�ed in a requirement, we characterized the support provided

by the con�guration management system as follows.

� Native: Feature semantics are built into the system.

� Direct: Feature semantics can be supported by con�guration or interpretation of an existing

system facility or facilities.

� Indirect: Feature semantics can be supported by scripts or programs that use the facilities

within the system and that can guarantee the preservation of system constraints.

� Inadequate: Feature semantics must be supported by scripts or programs that cannot be

prevented from violating system constraints or that require duplicating managed information

outside of the system.

We evaluated six commercial systems and found that while none of them provided native support for

any of the required capabilities, a few did provide direct support for several of the required capabil-

ities. Those systems therefore allowed, with some moderate tailoring, a higher degree of integration

of feature orientation with the current Italtel development process than the system currently used

by the development organization. The full results of this study are reported elsewhere [34].

5 Conclusion

In current practice, the notion of feature is an ill-de�ned, yet widely used, concept. It becomes

meaningful when seen as a way to modularize system requirements and when related to the range

of life-cycle artifacts and activities. We argue that there is a growing need for feature engineering

19



methods and techniques able to support a disciplined projection of features from the problem

domain into the solution domain. Doing so will bridge the gulf between the user and developer

perspectives of a system. In addition, the notion of feature engineering has the potential to improve

system understanding by raising the level of abstraction consistently across the life cycle.

This paper is a �rst step towards the development of feature engineering. We have presented

a provisional model for features in terms of their relationships to other artifacts. Moreover, we

have explored how feature engineering a�ects life-cycle activities, including requirements engineer-

ing, testing, con�guration management, and reverse engineering. This has been accomplished by

analysing the state of the art in the �eld and by evaluating our own experiences in real industrial

projects. In particular, we have briey discussed the results of a study we carried out to assess the

maturity and e�ectiveness of a large software house developing telecommunication software. As a

conclusion, we argue that the concepts involved in feature engineering cut across the entire software

life cycle, and that research e�orts in a number of software engineering disciplines are relevant to

feature engineering. These e�orts should be leveraged to help bring features to the fore.

Notice that even if the notion of feature and our own experience originate from concepts and

techniques de�ned within the context of telecommunication software, the validity of the observations

presented in this paper are not limited to that domain. Indeed, the advent of component-based

software development makes the notion of feature engineering of paramount importance in all the

application domains where software is used. Component-based development means development

by integration of di�erent chunks of functionality. Thus, feature engineering is de facto a crucial

methodological constituent of any component-based development method.

Certainly, this paper does not provide �nal solutions. It aims at laying the foundations to

address the problem e�ectively. In this respect, the framework presented in this paper can be

further improved. For instance, features are treated as undi�erentiated from each other. In complex

software systems, features will exist within hierarchies organized by properties such as dependence,

importance, and complexity. Understanding such hierarchies, and particularly the nature of feature

dependencies, should produce additional insights and bene�ts to software development.

In addition to re�ning basic concepts of feature engineering, there is a need for the development

of tools to support the integration of features into the solution domain. Using a feature orientation

to make explicit the relationships among development artifacts should increase a developer's ability

to comprehend complex systems. This will only come about, however, if tools exist to capture,

organize, and present the structure that features o�er. These tools would, for instance, provide

primitives for controlling access to artifacts in terms of features, as well as support the con�guration

20



of systems based on feature sets. We are carrying out some experimentation on this topic, as part

of our ongoing work to explore and address the issues and problems of feature engineering.

Acknowledgments

This work bene�ted from discussions with David Rosenblum of the University of California at

Irvine. The information concerning Italtel's software process and products was kindly provided by

Giorgio Comparin.

References

[1] A.V. Aho and N. Gri�eth. Feature Interaction in the Global Information Infrastructure. In

Proceedings of the Third ACM SIGSOFT Symposium on the Foundations of Software Engi-

neering, pages 2{5. ACM SIGSOFT, October 1995.

[2] AT&T Network Systems. 5ESSR Switch Global Technical Description, September 1991. Is-

sue 3.

[3] D. Batory and S O'Malley. The Design and Implementation of Hierarchical Software Systems

with Reusable Components. ACM Transactions on Software Engineering and Methodology,

1(4):355{398, October 1992.

[4] E.J. Cameron and H. Velthuijsen. Feature Interactions in Telecommunications Systems. IEEE

Communications Magazine, 31:18{23, August 1993.

[5] D.L. Carney, J.I. Cochrane, L.J. Gitten, E.M. Prell, and R. Staehler. Architectural Overview.

AT&T Technical Journal, 64(6):1339{1356, 1985.

[6] Y.-F. Chen, D.S. Rosenblum, and K.-P. Vo. TestTube: A System for Selective Regression

Testing. In Proceedings of the 16th International Conference on Software Engineering, pages

211{220. IEEE Computer Society, May 1994.

[7] K.W. Church and J.I. Helfman. Dotplot: A Program for Exploring Self-Similarity in Millions

of Lines for Text and Code. Journal of Computational and Graphical Statistics, 2(2):153{174,

June 1993.

[8] M.A. Cusumano and R.W. Selby. Microsoft Secrets. The Free Press, New York, 1995.

[9] A.M. Davis. The Design of a Family of Application-Oriented Requirements Languages. Com-

puter, 15(5):21{28, May 1982.

[10] C.G. Davis and C.R. Vick. The Sofware Development System. IEEE Transactions on Software

Engineering, SE-3(1):69{84, January 1977.

[11] R.G. Day. Quality Function Deployment. ASQC Quality Press, Milwaukee, Wisconsin, 1993.

21



[12] P.H. Feiler. Con�guration Management Models in Commercial Environments. Technical Re-

port SEI-91-TR-07, Software Engineering Institute, Pittsburgh, Pennsylvania, April 1991.

[13] M. Fowler. UML Distilled. Addison-Wesley, Reading, Massachusetts, 1997.

[14] H.V. Gomaa, H.V. Sugumaran, C. Bosch, and I. Tavakoli. A Prototype Domain Modeling

Environment for Reusable Software Architectures. In Proceedings of the Third International

Conference on the Software Reuse, pages 74{83. IEEE Computer Society, November 1994.

[15] N.D. Gri�eth and Y. Lin. Extending Telecommunications Systems: The Feature-Interaction

Problem. Computer, 26(8):14{18, August 1993.

[16] P. Hsia, A.M. Davis, and D.C. Kung. Status Report: Requirements Engineering. IEEE

Software, 10(6):75{79, November 1993.

[17] P. Hsia and A. Gupta. Incremental Delivery Using Abstract Data Types and Requirements

Clustering. In Proceedings of the Second International Conference on Systems Integration,

pages 137{150. IEEE Computer Society, June 1992.

[18] M. Jackson. Software Requirements and Speci�cations: A Lexicon of Practice, Principles, and

Prejudices. Addison-Wesley, Reading, Massachusetts, 1995.

[19] M. Jackson and P.Zave. Distributed Feature Composition: A Virtual Architecture for Telecom-

munications Services. IEEE Transactions on Software Engineering, 24(10):831{847, October

1998.

[20] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Sofware Engi-

neering A Use Case Driven Approach. Addison-Wesley, Reading, Massachusetts, 1997.

[21] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson. Feature-Oriented Do-

main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software

Engineering Institute, Pittsburgh, Pennsylvania, 1990.

[22] D.O. Keck and P.J. Kuehn. The Feature and Service Interaction Problem in Telecommunica-

tions Software Systems: A Survey. IEEE Transactions on Software Engineering, 24(10):779{

796, October 1998.

[23] Y.-J. Lin and M. Jazayeri. Guest Editoral: Introduction to the Special Section on Managing

Feature Interactions in Telecommunications Software Systems. IEEE Transactions on Software

Engineering, 24(10):777{778, October 1998.

[24] H. Ossher and W. Harrison. Combination of Inheritance Hierarchies. In Proceedings of the

Conference on Object-oriented Programming Systems, Languages, and Applications, pages 25{

40. Association for Computer Machinery, October 1992.

[25] J.D. Palmer and Y. Liang. Indexing and Clustering of Software Requirements Speci�cations.

Information and Decision Technologies, 18(4):283{299, 1992.

22



[26] M.H. Penedo and E.D. Stuckle. PMDB|A Project Master Database for Software Engineering

Environments. In Proceedings of the 8th International Conference on Software Engineering,

pages 150{157. IEEE Computer Society, August 1985.

[27] W.N. Robinson and S. Pawlowski. Surfacing Root Requirements Interactions from Inquiry Cy-

cle Requirements Documents. In 3rd International Conference on Requirements Engineering,

pages 82{89. IEEE Computer Society, April 1998.

[28] J. Rumbaugh, I. Jacobson, and G. Booch. Uni�ed Modeling Language Reference Manual.

Addison-Wesley, Reading, Massachusetts, 1998.

[29] J. Rumbaugh, I. Jacobson, and G. Booch. Uni�ed Modeling Language User Guide. Addison-

Wesley, Reading, Massachusetts, 1998.

[30] R.W. Krut, Jr. Integrating 001 Tool Support into the Feature-Oriented Domain Analysis

Methodology. Technical Report CMU/SEI-93-TR-01, Software Engineering Institute, Pitts-

burgh, Pennsylvania, July 1993.

[31] M. Sitaraman. Performance Parameterized Reusable Software Components. International

Journal of Software Engineering and Knowledge Engineering, 2(4):567{587, October 1992.

[32] A.M. Sloane and J. Holdsworth. Beyond Traditional Program Slicing. In Proceedings of the

1996 International Symposium on Software Testing and Analysis (ISSTA '96), pages 180{186.

ACM SIGSOFT, January 1996.

[33] Software Maintenance & Development Systems, Inc, Concord, Massachusetts. Aide de Camp

Product Overview, September 1994.

[34] C.R. Turner, A. Fuggetta, L. Lavazza, and A.L. Wolf. Evaluating Support for Feature-Based

Development in Con�guration Management Systems. Technical Report CU-CS-875-98, De-

partment of Computer Science, University of Colorado, Boulder, Colorado, November 1998.

[35] P. Zave. Feature Interactions and Formal Speci�cations in Telecommunications. Computer,

26(8):20{29, August 1993.

23


