
1

Security towards the Edge: Sticky Policy
Enforcement for Networked Smart Objects

Sabrina Sicari∗‡, Alessandra Rizzardi∗, Daniele Miorandi§, Alberto Coen-Porisini∗
∗Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria,

via G. Mazzini 5 - 21100 Varese, Italy
§U-Hopper, via A. da Trento 8/2, 38122 Trento, Italy

‡Corresponding author
Email: {sabrina.sicari; alessandra.rizzardi; alberto.coenporisini}@uninsubria.it,

daniele.miorandi@u-hopper.com

Abstract—One of the hottest topics in the Internet of
Things (IoT) domain relates to the ability of enabling
computation and storage at the edges of the network. This
is becoming a key feature in order to ensure the ability
of managing in a scalable way service requests with low
response times. This means being able to acquire, store, and
process IoT-generated data closer to the data producers
and data consumers. In this scenario, also security and
privacy solutions must be applied in a capillary way at
the edges of the network. In particular, a control on
access to data generated by IoT devices is necessary for
guaranteeing proper levels of security and privacy as
well as for preventing violation attempts, while allowing
data owners to monitor and control their information.
In this paper, a sticky policy approach is proposed as a
strategy for efficiently managing the access to IoT resources
within an existing distributed middleware architecture. As
demonstrated in the experimental evaluation, sticky policies
represent a promising and efficient technique to increase
the robustness (in a security perspective) of the IoT system.

I. INTRODUCTION

Security and privacy, along with scalability and in-
teroperability, are the main key issues potentially harm-
ing the widespread adoption of the Internet of Things
(IoT) paradigm. In fact, IoT applications are typically
characterised by the presence of heterogeneous entities
interacting among themselves and acquiring data from
the surrounding environment. A sort of global network
is thus created, enabling services to end users across
different application domains (e.g., smart monitoring,
smart building, smart transportation, e-health context,
and so on). Within such a network, a huge amount of
data is sent using wireless communication technology,
thereby presenting risks of violation of sensitive and/or
personal information. Therefore proper mechanisms for
authentication and access control must be put in place in
order to protect private data by companies and service
providers that want to foster the spreading of IoT-based
platforms and services.

Proper solutions for security and privacy management
can be modelled, exploiting various mechanisms [1],
such as access-control policies enforcement, policy life
cycle management, and so on. In this direction, an ef-
fective approach should be coupled with methods based
upon edge computing concept [2]. Edge computing is an
emerging paradigm aimed at improving the scalability
and Quality of Services (QoS) for real time applica-
tions in IoT. If information and network resources are
managed at the edges of the network, then also security
and privacy policies should follow a similar approach.
Moving data processing, storage, and security at the edge
of the network brings several advantages [3], such as: (i)
reducing network’s latency and, thus, service response
times; (ii) preventing unnecessary network resources’
consumption by limiting the scope of data spreading
and hence improve scalability; (iii) enhance service
availability; (iv) increasing the robustness of the whole
system thanks to the removal of single points of failures
into the network infrastructure.

Besides the interest of companies and organizations,
the new approaches should improve user experience, so
that users can feel more in control of their confidential
data, especially in the context of multiparty interactions,
as typically happens in IoT settings. Little has been done
so far to directly involve users (or entities acting on their
behalf) in the explicit management and enforcement of
security and privacy policies. By moving security and
privacy enforcement closers to the end users it becomes
easier to provide users with end-to-end control on how
their data is accessed, processed and used.

Sticky policies fit very well this scenario. Being di-
rectly attached to the data, and flowing with the data
themselves across one or more application domains,
policies can be effectively enforced in a distributed
manner, enabling access based on the preferences of the
data owners.

This paper presents a security and privacy-aware IoT-



2

based platform, based upon the sticky policy paradigm,
able to meet the following requirements:

• Allowing the users to set and manage specific
access control policies on their own data before
sharing them on the IoT network;

• Providing a middleware architecture that manages
and enforces the sticky policies on the user behalf
and that allows them to monitor and even control
how their information is processed;

• Moving as much as possible the data and policy
management at the edge of the IoT infrastructure, in
order to enhance its performance (mainly in terms
of delay) and resilience towards misbehaving nodes
and users.

The remainder of the article is organized as follows:
Section II describes and analyses the relevant state of
the art; Section III describes the IoT middleware and
the enforcement framework that represents the starting
point of the proposed solution; Section IV details the
new enforcement framework based on sticky policies;
Section V presents the experimental validation that aims
at demonstrating the feasibility of the proposed solution,
before concluding the paper in Section VI.

II. STATE OF THE ART

In order to better clarify the innovative contribution of
the presented work, we hereby present a short overview
of the related literature. Generally speaking, the level of
maturity of solutions in the enforcement by means of
sticky policies is still rather low, in particular when con-
sidering the IoT context. In fact, to the best of authors’
knowledge, there are no available approaches specifically
tailored to IoT constraints and requirements [4].

Companies operating in different application domains
are actively searching for efficient security and privacy
management tools, able to improve the robustness of
their systems at different network levels. In particular,
IoT platforms, which are intrinsically characterized by
the presence of heterogeneous technologies communi-
cating over the wireless medium, need to provide se-
curity and privacy guarantees. Moreover, data can flow
through different realms and administrative domains. For
example, data can be sold by a company to another
one, thereby increasing the vulnerability with respect to
different types of attack aimed at compromising the data
transmitted over the network or at disclosing confiden-
tial information. Such weaknesses mainly involve end-
devices, thus leading to conceive a solution able to fix
the access control issue at the edges of the network.

Also national and international regulations are increas-
ingly imposing baseline privacy requirements concerning
information sharing within companies and across differ-
ent organizations. As an example, it is worth citing the

privacy principles of the Organization for Economic Co-
operation and Development (OECD) [5] and the recently
adopted EU General Data Protection Regulation (GDPR)
[6]. However, it is a matter of fact that often companies
processing and managing data are not fully aware of the
legal constraints or are not aware of the level of consent
that has been granted by data owner.

On the other hand, most individuals have limited
understanding of security and privacy polices when
applied to their confidential data. In addition, people
have almost no control over the faith of their data, once
they have been disclosed to a third party. It is in first
place a matter of trust [7]: therefore solutions for identity
and privacy management are going to play a key role
in protecting identities and profiles. Good management
practices could also help to detect malicious activities
and support forensic analysis and monitoring. If people
are not willing to be involved in the protection and
management of their digital assets, trusted third parties
could do this on their behalf and could provide people
with easy-to-use tools to monitor and keep the situation
under control.

Such considerations have been partially covered by
some works in the area, as described below.

Some security solutions based on the use of sticky
policies in cloud environments, such as [8] [9] [10]
[11], have been proposed. Other application case studies
for sticky policies are related to information exchanges
among mobile devices [12] or digital ecosystems [13].
Such works present various limitations, mostly regarding
how to keep users in control of the access to their
personal (or even sensitive) data, as well as how to react
against violation attempts. Approaches proposed in the
literature are based upon the usage of robust encryption
mechanisms, which are associated to sticky policies,
along with the capability of updating and revoking them
dynamically. Yet, the literature lacks a suitable and
realistic approach for building a secure, customizable,
and cross-domain solution. In this paper, we tried to cope
with such issues in the context of IoT, by proposing an
enforcement framework based on sticky policies within
a scalable, cross-domain, security and data quality-aware
IoT middleware, named NOS. As will be discussed in
detail in in Section V, the proposed solution is able to
effectively handle violation attempts and provides the
users and data sources with a wide control over the
management of their information.

Data and sticky policies are expected to be en-
crypted before transmission. In this direction, several
mechanisms have been proposed, including: Public-
Key Encryption (PKE), Identity-Based Encryption (IBE),
Attribute-Based Encryption (ABE), and Proxy Re-
Encryption (PRE) [14]. They differ from each other in
terms of robustness and complexity. Such techniques can



3

be employed in order to enforce access control based on
sticky policies, as described in [7] [15] [1] [14] [16]
[17] [18]. All these solutions are not sufficient to enable
a sticky policies framework coupled with an efficient key
management system. Additionally, they do not define a
hierarchy or a structured specification for sticky policies
to be used in a corporate setting. Finally, an analysis of
the overhead and delay of the proposed approaches is
still missing. This work represents an attempt to fill said
gaps.

Another important issue is about the semantic to
be adopted for specifying sticky policies. No common
standard exists on this aspect. Several languages may
be used, such as JSON, XML, etc. In this work, we
chose JSON because of its suitability for the existing
NOS architecture and, mostly, because it allows the data
model to dynamically evolve. Other works make use of
XML, such as [19] [20], or the IBM EPAL (Enterprise
Privacy Authorization Language), as in [21] [22].

A further requirement regards the access control
model to be put in place. In this paper, we adopted
ABAC, which allows regulating the access to resources
in a more precise, flexible and fine-grained way, with
respect to other solutions, based on RBAC, such as [23],
or on simple privacy tags [24].

Finally, some relevant policy enforcement systems
have been proposed, which do not make use of sticky
policies. In Section III we referred to them as “tradi-
tional” approaches. The applicability to IoT scenarios
has however received limited attention. Some works cou-
ple a standardized language, such as XML or XACML,
with an extension of the baseline RBAC scheme to obtain
a unitary framework [25] [26]. An ad hoc policy rep-
resentation languages, named Hierarchical Policy Lan-
guage for Distributed Systems (HiPoLDS), is defined in
[27]. [28], [29] and [30] enforce access control policies
by means of a proper framework named Policy Machine
(PM) and of a semantic web framework, respectively.
However, they do not refer to a distributed nature of the
proposed solutions, which is a pivotal requirement in IoT
applications.

III. SYSTEM ARCHITECTURE

This work starts from an existing cross-domain mid-
dleware for IoT applications, called NetwOrked Smart
object (NOS), presented and described in [31]. NOSs are
able to manage in a distributed manner the data acquired
by heterogeneous sources and to enable relevant services
to the end-users. In NOSs, the storage and the processing
of the information are not performed by a central entity,
but they are distributed among a network of smart nodes.
The goal is minimizing latency, providing support for
user/service mobility, and improving the resilience of the
whole system. Figure 1 shows an overview of the system

infrastructure, highlighting the proximity of the various
network entities.

Fig. 1: Overall system infrastructure

NOSs are also able to evaluate, by means of proper
algorithms [32], the security and data quality of the infor-
mation transmitted, in order to satisfy user requirements,
while providing a lightweight and secure information
exchange process, based on an authenticated publish
and subscribe mechanism [33]. In the next sections, the
architectural components of NOSs will be detailed, as
long as the actual enforcement framework, defined in
[34]. First, we will discuss the limits of the actual policy
enforcement approach and, then, we will present a more
efficient solution, based on the usage of sticky policies.

A. Networked Smart Object Architecture

NOSs essentially include two main entities: (i) the
nodes, conceived as heterogeneous devices (e.g., RFID,
NFC, actuators, sensors etc.) which generate and process
data for the IoT platform; (ii) the users, who interact
with the IoT system through services making use of such
IoT-generated data, typically accessing them by means
of a mobile device (e.g., smartphone, tablet) connected
to the Internet (e.g., through WiFi, 3G, or Bluetooth
technologies).

Interfaces for the communications with the data
sources (i.e., the nodes) and with the users have been
defined. In the former case, HTTP protocol is adopted for
collecting the data from the IoT devices and for allowing
registering data sources. In fact, NOSs deal both with
registered and non-registered sources. The registration
is not mandatory, but it provides various advantages
in terms of security: registered sources may specify
an encryption scheme for their interactions with NOSs,
thus increasing the level of protection of their com-
munications. The information on the registered sources
are recorded in the storage unit, named Sources. For



4

each incoming data unit, both from registered and non-
registered sources, the following information are gath-
ered: (i) the kind of data source, which describes the
kind of node; (ii) the communication mode, that is, the
way in which the data are collected (e.g., discrete or
streaming communication); (iii) the data schema, which
represents the type (e.g., number, text) and the format of
the received data; (iv) the data itself; (v) the reception
timestamp.

Since the received data are of different types and
formats, NOSs initially put them in the Raw Data storage
unit. Data in such a collection are periodically processed,
in a batch way, by the Data Normalization and Analyzers
units, in order to obtain a uniform representation and to
add metadata on security aspects (i.e., level of confiden-
tiality, integrity, privacy and robustness of the authenti-
cation mechanism) and data quality ones (i.e., level of
accuracy, precision, timeliness and completeness). Data
quality assessment is based on a set of rules stored in a
proper format in another storage unit, named Config, and
are detailed in [32]; this allows users who access the IoT
data to filter directly by themselves the data processed
by NOSs according to their personal preferences.

Communication between NOSs and users is based on
the Message Queue Telemetry Transport (MQTT) proto-
col [35], which is used for disseminating the information
to the interested users. Figure 2 summarizes the NOS’s
components just introduced.

A prototypical implementation of the NOSs spec-
ifications is openly accessible at https://bitbucket.org/
alessandrarizzardi/nos.git.

B. Networked Smart Object Enforcement System

NOSs’ modules interact among themselves through
RESTful interfaces. This enables NOSs’ administrators to
add new modules or modify the existing ones at runtime,
as they work in a parallel and non-blocking manner.
Moreover, the non-relational nature of MongoDB allows
also the data model to dynamically evolve over the
time. Such features allow NOSs to adopt an enforcement
framework that acts as a sort of wrapper, responsible for
properly managing the available resources and handling
possible violation attempts without affecting the existing
NOS functionality.

The integration of a policy enforcement framework
with NOSs is the subject of [34]. Such framework
foresees, for each NOS: (i) a Policy Enforcement Point
(PEP), which intercepts the access requests and queries
the PDP about its acceptance; (ii) a Policy Decision Point
(PDP), which evaluates the access requests against the
authorization policies and takes the authorization deci-
sions; (iii) a Policy Administration Point (PAP), which
contains the full set of authorization policies established
by the system administrators.

Fig. 2: NOS architecture

In our implementation, we express policies by means
of a flexible interoperable specification language, based
on JSON syntax. It is flexible enough to handle the
features of IoT contextheterogeneous analyzed context
both in a general-purpose and in a customizable way.
The chosen access control model is the Attribute Based
Access Control (ABAC) [36], because of its flexibility
and effectiveness. In particular, Moreover, as attributes
can be dynamically configured within NOSs, the system
can effectively be adapted at run-time in order to ac-
commodate specific application needs. Note that users
have to register before interacting with NOSs; during
the registration process, a set of attributes is assigned to
them on the basis of their role in the specific application
context, thus enabling them to access a given set of
resources.

On this basis, a set of primitives, able to specify and
enforce a large variety of attribute-based security and
data quality policies has been identified, in particular,
covering: node access control, node data transmission,
node data processing, user access control, user service
request, and service provision.



5

In [34] we demonstrated the technical feasibility of the
proposed approach by means of the NOS’s prototype in
a real use case scenario, validating its robustness towards
violation attempts, memory occupancy, and latency.

However, such an enforcement framework presents
some limitations, more specifically in terms of data own-
ers’ monitoring capability. Moreover, since the approach
followed by NOSs for data management is data-driven,
then also policies should be expressed following a data-
centric perspective. Therefore, security and privacy rules
will be coupled with the corresponding IoT data and
de-coupled from the connections among the involved
entities. In other words, policies are directly attached to
the data and not to the transactions, in order to cover the
whole data lifecycle without requiring a central control
server.

In fact, at this stage, the entire NOS IoT architecture
is still conceived as a “traditional” one, i.e., based on the
transmission of data to a system where access control is
regulated in a centralized way. In this case, the owner
of the data (i.e., a data source) has all the attributes,
the encryption keys and the necessary credentials for
identifying itself, thus determining access permission,
and for ciphering the data to be sent to NOSs; each NOS
that wants to decrypt such data has to own the related
policies and credentials. Such policies/credentials must
be shared and synchronized by all NOSs.

As said in Section sec:relatedwork, data owners and
also data consumers are often partially or completely
unaware of how their information is managed or what
kind of information they receive from a particular ser-
vice. This scenario is made even more complex by the
presence of multiple actors, as typically happens in IoT
environments. In this case, clearly, a centralized system
in charge of handling the data along with the associated
policies is no longer feasible. NOSs already meet the
requirement of acting as a distributed middleware for
data management as well as an enforcement system
for regulating, in an efficient way, the access to the
resources. In such a context, however, users should be
more directly involved in the definition of the policies
that specify how their data can be accessed and used.
Also, the dissemination of the policies among different
application realms (e.g., business companies) must be
regulated in a more efficient, secure, and scalable way,
possibly at the edges of the network. Delegating to NOSs
the entire management of access control and policies’
definition could make them even more vulnerable to
malicious attacks (i.e., each NOS could become a single
point of failure), which can hinder the reliability of the
whole IoT system.

In this paper, we want to overcome such issues by
providing NOSs with the ability of handling sticky
policies, established by end-users and data sources and

regulating how data can be accessed, by whom and for
what. Following the sticky policies paradigm, policies
are transmitted along with the associated data, as duly
explained in Section IV-A. NOSs own no policies/cre-
dentials, while a trust authority is responsible for their
management. The owner of the data sends them in an
encrypted way along with the associated sticky policy;
then each NOS can contact the trust authority in order
to obtain the access permissions on the received data. In
this way, no synchronization or policy sharing is required
among the different NOSs. And, clearly, users and data
sources have an in-depth control over the flow of their
own information.

Figures 3 and 4 sketch the difference between the
two approaches just described. In the next sections, the
proposed solution will be detailed.

IV. STICKY POLICY ENFORCEMENT FRAMEWORK

A. Backgound on Sticky Policies
The sticky policy paradigm was first proposed by

Karjoth, Schunter, and Waidner [18]. Sticky policies are
able to regulate how data can be accessed and used. They
are transmitted along the data they refer to throughout the
entire data life cycle. Specifically, sticky policies allow
to define the following aspects:

• The owner of the data;
• The data content, possibly encrypted;
• The scope of the data;
• Where and when data will be available;
• Specific obligations and restrictions.
In detail, the concept of sticky policy is to attach

security and privacy policies to owners’ data and drive
access control decisions and policy enforcement. Sticky
policies allow specifying access rule in an extremely
fine-grained manner: in principle every data unit could
have its own, unique, policy. Furthermore, as policies
‘travel’ with the data across the entire system, they
could (again, in principle) provide protection over the
entire data life cycle. Such an approach has been mainly
introduced for security and privacy enforcement: when
submitting data to a consumer, a user consents to the
applicable policies selecting the proper preferences.

Such features are particularly interesting in some
scenarios, as that of IoT, where user or business con-
fidential information may flow across organizational
boundaries [1]. For example, social networks may share
some information with marketing companies; similarly,
cloud applications may pass data, depending on a need,
among different realms. Such situations represent well-
known open issues in the field of security and privacy
enforcement.

Starting from this premise, in this paper, we designed
and developed a sticky policy-based enforcement frame-
work tailored to the NOS middleware. As the previous



6

Fig. 3: The traditional approach adopted by NOS

enforcement system [34], it is integrated as a wrapper
with respect to the NOSs’ existing functionalities, but it
works in a completely different manner, exploiting edge
computing concepts, as explained in the next section.

B. Proposed solution

Data sources and IoT devices owned by the users
can agree with NOSs on an encryption scheme and
on encryption keys to cipher the data transmitted. This
represents a first level of protection, covering basically
the communication path. Together with data, also the
relevant policy is sent, also properly encrypted. The
policy specifies how NOSs should manage the data.

In our scheme, sticky policies are specified as de-
scribed in Listing 1. A policy includes information on:

• The owner of the data (e.g., in the form of a unique
identifier);

• One or more purposes for which the data can be
used (e.g., statistical or analytical scope, sharing in
social networks, private use within certain compa-
nies, and so on)

• A timestamp that points out the validity (i.e., the
lifetime) of the data within the IoT system; once this
time has elapsed, then the data must be discarded
and no longer transmitted

• One or more constraints which represent the rules to
be applied to data (e.g., with whom the data may be
shared, if the data must be shared in an aggregated
form or not, and so on).

1 { ” s t i c k y p o l i c y ” : {
2 ” owner ” : ” t h e owner o f t h e d a t a ” ,
3 ” d a t a ” : ’ ’ d a t a c o n t e n t , p o s s i b l y e n c r y p t e d

wi th t h e a d o p t e d e n c r y p t i o n mechanism ’ ’ ,
4 ” p o l i c y ” : [{
5 ” s c o p e s ” : [{
6 ” scope1 ” : ” a l l o w e d use f o r t h e d a t a ” ,
7 ” scope2 ” : ” a l l o w e d use f o r t h e d a t a ”
8 } ] ,
9 ” v a l i d i t y ” : ’ ’ e x p i r a t i o n t imes t amp ’ ’ ,

10 ” c o n s t r a i n t s ” : [{
11 ” c o n s t r a i n t s 1 ” : ” o b l i g a t i o n s and

r e s t r i c t i o n s ” ,
12 ” c o n s t r a i n t s 2 ” : ” o b l i g a t i o n s and

r e s t r i c t i o n s ” ,
13 ” c o n s t r a i n t s 3 ” : ” o b l i g a t i o n s and

r e s t r i c t i o n s ”
14 } ] ,
15 } ]
16 }}

Listing 1: JSON sticky policy schema

In order for the system to work, it is necessary to
introduce a new component, i.e., the trust authority. The
trust authority is responsible for:

• Defining and managing a dictionary of valid scopes
and constraints, which can be required by the



7

Fig. 4: The new sticky policy-based approach adopted by NOS

sources for the data transmitted within the IoT
system. Such information depends on the specific
application domain and may change over time.

• Providing NOS (upon reception of a query) with
access decisions related to the current sticky policy
as well as the decryption keys for accessing the
data of interest. Note that, with respect to the
previous solution presented in [34] and described in
Section III-B, in this case only the PEP is located
into NOSs; it represents a module in charge of
intercepting the requests of access to resources,
which are sent to the PDP that is located within the
trust authority itself, as the PAP. As a consequence,
the role of NOSs in the enforcement process is soft-
ened, and NOSs can be no longer considered single
point of failure. By delegating some operations and
controls to the trust authority, this also improves the
overall efficiency of the NOSs middleware.

The interaction between a NOS and the trust authority
works as follows:

1) When a NOS receives data from a source with the
associated sticky policy, it first stores it in the Raw
Data storage unit;

2) Once the data has been analyzed by the NOS
following the procedure described in Section III-A,
a topic is assigned to them;

3) Users/devices subscribed to such topic are notified
of the new incoming message;

4) Access to topics is regulated on demand by NOSs
through proper requests to the trust authority, by
means of the associated sticky policy.

The subscription to certain topics is therefore regulated
by the sticky policies associated to the single data units.
More in detail, the sticky policies state the scope, the
validity and the constraints to be applied to the current
data; when a user/device is notified of a new published
data, she has to demonstrate to own the correct attributes,
compliant with the scope and the constraints contained
in the sticky policy. If not, the received data cannot be
decrypted. Therefore, also subscriptions will be accepted
or revoked according to the current sticky policies. In
this way, the owners of the data have a very powerful
and fine-grained control over their information; they have
not to contact NOSs or other control entities in order to
modify the way in which their data are treated, since they
can change directly their preferences by adapting the
sticky policy sent along the dataMoreover, NOSs have
not to synchronize themselves or share the same policies,
because the trust authority is in charge of handling and,
if required, updating the proper dictionary. Hence, the
system is able to provide the following guarantees:



8

• Each source/user establishes its own policies on
data, respecting the dictionary provided by the trust
authority;

• Sources/users must trust the IoT platform (com-
posed by NOSs and trust authority) that their poli-
cies are correctly stored, applied, and transmitted
along with the associated data under specific topics;

• On the basis of the subscribers’ requests, NOSs
establish how to regulate the release of data under
certain topics following the sticky policies’ guide-
lines;

• In case data are transmitted towards different NOSs
to be shared with further interested users/applica-
tions, sticky policies always travel with them;

• Policies and data are always transmitted in an
encrypted manner; the encryption scheme is agreed
between NOS and source/user case by case;

• NOSs themselves give the authorized subscribers
the necessary credentials to access the information;
if certain information is directly passed from an
application domain to another one, then the latter
must obtain the access permission by NOSs by
presenting the sticky policy associated to the desired
data.

What emerges is that all interactions are mediated by
the NOSs, which have to be considered trusted by the
sources/users. Therefore, no agreement on encryption
schemes or policies formats has to be performed by
the involved parties (i.e., data sources, users), but only
among such parties and NOSs. Access to resources is
regulated by the sticky policies attached to data, both in
case of private and public networks.

Note that the original NOS data model, conceived
in [34], had to be enhanced in order to accommodate
the new information included by the sticky policies.
As shown in Listing 2 and depicted in Figure 5, the
new (normalized) data model includes, besides the pre-
existing information, the associated sticky policy.

1 { ” n o r m a l i z e d d a t a ” : [{
2 ” d a t a 1 ” : {
3 ” t imes t amp ” : ” t h e a r r i v a l t ime of d a t a ” ,
4 ” d a t a ” : ’ ’ t h e d a t a c o n t e n t , p o s s i b l y

e n c r y p t e d ’ ’ ,
5 ’ ’ d a t a t y p e ’ ’ : ” t h e k ind of d a t a ” ,
6 ” owner ” : ” t h e owner o f t h e d a t a ” ,
7 ” s t i c k y p o l i c y ” : [{
8 ” s c o p e s ” : [{
9 ” scope1 ” : ” a l l o w e d use f o r t h e d a t a ” ,

10 ” scope2 ” : ” a l l o w e d use f o r t h e d a t a ”
11 } ] ,
12 ” v a l i d i t y ” : ’ ’ e x p i r a t i o n t imes t amp ’ ’ ,
13 ” c o n s t r a i n t s ” : [{
14 ” c o n s t r a i n t s 1 ” : ” o b l i g a t i o n s and

r e s t r i c t i o n s ” ,
15 ” c o n s t r a i n t s 2 ” : ” o b l i g a t i o n s and

r e s t r i c t i o n s ” ,
16 ” c o n s t r a i n t s 3 ” : ” o b l i g a t i o n s and

r e s t r i c t i o n s ”
17 } ] ,

18 } ]
19 } ,
20 ” d a t a 2 ” : {
21 . . .
22 } ,
23 ]}
24 }

Listing 2: JSON data schema

Fig. 5: Data model

NOSs should be equipped with a module able to
parse the preferences expressed by the sticky policies
themselves, in order to proper query the trust authority
and obtain the access decision. To this end, a new
module, named Policy Parser, is introduced. Figure 6
sketches the resulting interactions among components.

Obviously, the presence of a single trust authority for
a potentially large IoT system may present scalability
problems Therefore, multiple trust authorities may be
set up. They may all be able to handle any type of
policy (in this case they should be synchronized) or,
alternatively, each trust authority may be assigned to
a particular application domain or data set. In such a
situation, NOSs should be aware of the relationships
among the data provided by the sources and the trust
authority/authorities that own the related policy set, in
order to forward the queries to the right one. Hence, a
sort of distributed trust authorities may be created over
the NOSs middleware. The infrastructure thus defined
aims at achieving a clever division of tasks so that the
overall performances of the IoT system is enhanced, both
in terms of resilience and efficiency.

Summarizing, the architectural components of the IoT
system along with their interactions are depicted in the
sequence diagram in Figure 7.

V. EXPERIMENTAL VALIDATION

We have developed a prototypical implementation of
the proposed approach, in order to empirically measured



9

Fig. 6: Overview of components and interactions

its performance and provide insight into its technical
feasibility. The starting point is the prototype presented
in [34], which however does not include support for
sticky policies.

A. Experimental settings

NOSs are deployed on a Raspberry Pi. For validation
purposes, data from real-world smart home testbed are
used1. In particular, we used data from smart meter
number 2 of Home A, which include, among the others,
electricity consumption data of: kitchen lights, bedroom
lights, duct heater HRV, and HRV furnace. Note that
the home has a total of eight rooms and includes three
full-time occupants. Measures are acquired by means of
installed sensors that collect electricity data every minute
for the entire home. To obtain more details about the
deployment and data, please refer to [37].

The behaviour of a set of nodes that send such data
to NOS, is emulated by means of a laptop, which uses

1http://traces.cs.umass.edu/index.php/Smart/Smart

Fig. 7: Achitectural components and interactions

WiFi network to communicate with the Raspberry Pi.
The same WiFi connection is also used for the com-
munications with the MQTT broker and with the trust
authority module, implemented as a separate component,
which interacts with NOSs depending on the sticky
policy requests. The enforcement framework previously
defined in [34] has been replaced with the new one, as
described in Section IV.

In order to demonstrate the effectiveness of the pro-
posed solution, a comparison with the previous approach
in terms of storage, overhead and delay has been carried
out.

Due to the nature of the information retrieved from
the dataset, we can suppose an application case study
where three kinds of users may be interested in the
information provided by NOS: (i) the owner of the
smart home, who wants to know the actual conditions
of his home and to remotely control appliances (e.g.,
turn up the heating, turn off the light in case of is
it turned on by mistake); (ii) the son of the owner,
who also wants to receive some information from home
(e.g., the presence of his parents or whether the lights
are on), but, with respect to his parents, he has no
right to give access control permissions to other people;
(iii) an intruder who wants to get information about
the habits of the home-dwellers for malicious purposes
(e.g., get into the house when there is nobody). The
owner of the house is registered to the NOS in charge
of acquiring the data provided by the sensors placed
into the home. Information are disclosed to the owner
with “analysis” “control”, and “administrator” scopes



10

and their sharing is restricted to users or devices which
owns the right credentials to access the system and
one of the following attributes/functions: owner, home
identifier. Instead, his son is registered to the NOS with
“analysis” and “control” scopes and attributes/functions:
dweller, home identifier.

B. Storage overhead

NOS components have the following storage require-
ments:

• The data sources and the users have to store the
credentials for ciphering the data to be transmitted
to NOS. When sources/users transmit a data to
NOS, they may also send the related sticky policy.
This aspect causes, with respect to the “traditional”
approach, an increase of traffic into the network,
since not only the data is transmitted, but also the
associated policy. We measured an average increase
of 0.5 kilobytes for each transmitted data unit,
considering the sticky policy format specified in
Listing 1;

• NOSs have to store different kinds of information.
Yet, it is worth remarking that NOSs do not support
persistent storage of IoT data for Raw Data and
Normalized Data collections. Indeed, incoming data
are only temporarily cached on the NOSs’ virtual
memory while being processed before being sub-
mitted to the MQTT broker. Once data are further
pushed to or pulled from the MQTT client (which
handles the topics notification to subscribers), the
data can be safely removed from NOSs. Instead,
Config and Sources databases must be persistent
because they contain information necessary for the
correct operations of NOSs. In the previous ap-
proach [34], another collection was responsible for
the policy storage, but, adopting the sticky policy
based mechanism, NOSs have no longer to store all
the policies managed by the IoT system. Therefore,
the memory occupied on the hard disk decreases.
However, the virtual memory occupancy of data
for Raw Data and Normalized Data collections
unavoidably increases because the data model has
grown to store the sticky policies along with each
data (see Listing 2 in Section IV-B). Since NOS
runs on a Raspberry Pi, the maximum storage
capacity with the actual technology corresponds to
1 gigabyte (i.e., the RAM provided by Raspberry
Pi 2 and 3). With the “traditional” approach, we
measured an average memory occupancy at runtime
of 6.3 megabytes; whereas, with the sticky policy
approach, it increased up to 10.2 megabytes on
average. Note that these values are only indica-
tive, since the memory occupancy depends on a
number of factors, including: (i) the frequency of

data fetching from sources; (ii) the frequency of
execution of the routines for removing data from
non-persistent collections (at the moment this task
is executed every 5 minutes); (iii) the number of
sources.

• The trust authority has to store the entire set of the
valid scopes and constraints used for sticky policies’
composition. The dimension of this storage obvi-
ously depends on the specific application domain.
In the sample implementation this was negligible.

C. Delay

An important metric to consider is the additional
delay introduced by the enforcement framework using
sticky policies with respect to that proposed in [34].
The main difference between the two approaches resides
in how policies are evaluated. In this work, policies
are stored into NOSs and are transmitted along with
data so that recipients can independently determine if
they can access such an information or not; to obtain
the access permission, the recipients can subscribe to
certain topics and the subscription is accepted only if
the request satisfies the requirements established by the
sticky policies associated to the data. If a sticky policy
is changed for a certain topic, the subscription may
become not valid, thus requiring a new subscription.
Access permissions are not locally evaluated by NOSs,
but they are delegated to the trust authority; a query to
the trust authority is required, which clearly requires time
to be transmitted and processed. Instead, in the approach
presented in [34], all the requests are executed within
NOSs, thus increasing the computational load on NOSs
themselves but presenting a lower delay. Moreover, in
the case of update/addition/revocation of policies, NOSs
had to be synchronized; conversely, with the sticky
policy approach, the only task to be performed is the
update of the dictionary of the trust authority. Note
that, in case the dictionary becomes too large (maybe in
presence of multiple application domains), as just said in
Section IV-B, multiple trust authorities may be deployed.

Figure 8 shows a comparison of the distribution of
the delays generated by the two approaches, measured
with our prototypical implementation over a period of
one hour. Data rate strictly depends on the fetching of
data acquisition of the used data set, which is every
minute. The considered time window concerns a week
of measurements. The graph demonstrates that the new
approach outperforms the traditional one, in particular in
terms of minimum delay value. Such an evaluation has
been performed by simulating several subscription/ac-
cess requests from users with function of owner and
dweller.



11

Fig. 8: Whiskers-box diagram of delay comparison:
previous VS actual policy enforcement framework

D. System behaviour

In this section we examine the behaviour of the result-
ing system, in order to show that it is able to manage
the desired policies and to counteract potential violation
attempts. For more details about the functionality of the
traditional approach we refer to [34].

The first step is the data transmission by one of
the sensor, identified as “sensor BL-homeA”, which is
represented in Listing 3. The data is related to the
bedroom lights; the scope of sticky policy is restricted
to “analysis” and “control”, and access permission is
only allowed to users or devices which have “owner” or
“dweller” as attributes, besides the correct home iden-
tifier. Note that the information is sent in an encrypted
way.

1 { ” d a t a t r a n s m i s s i o n ” : [{
2 ” d a t a c o n t e n t ” : {
3 ” t imes t amp ” : ” 3 1 / 1 2 / 2 0 1 6 10 : 1 0 : 0 0 ” ,
4 ” d a t a ” : ” 0 .00465 ” ,
5 ” d a t a t y p e ” : ”kW” ,
6 ” owner ” : ” s e n s o r BL−homeA” ,
7 ” s t i c k y p o l i c y ” : [{
8 ” s c o p e s ” : [{
9 ” scope1 ” : ” a n a l y s i s ” ,

10 ” scope2 ” : ” c o n t r o l ” ,
11 } ] ,
12 ” v a l i d i t y ” : ” 3 h o u r s ” ,
13 ” c o n s t r a i n t s ” : [{
14 ” c o n s t r a i n t s 1 ” : ” a c c e s s a l l o w e d f o r

a n a l y s i s , c o n t r o l s c o p e s − owner ” ,
15 ” c o n s t r a i n t s 2 ” : ” a c c e s s a l l o w e d a n a l y s i s ,

c o n t r o l s c o p e s − d w e l l e r ”
16 } ] ,
17 }
18 ]}

19 }

Listing 3: Data transmission

We assume Bob to be registered as an “owner” to
the monitoring service offered by the NOS installed into
the smart home. Bob requests the subscription to the
topic “bedroom lights”, which allows access to the data
related to the bedroom lights. The request of subscription
is presented in Listing 4 and, as we can see, Bob declares
his attributes to NOSs, in order to obtain the access.

1 { ” s u b s c r i p t i o n r e q u e s t ” : [{
2 ” username ” : ”Bob” ,
3 ” t o p i c ” : ” bedroom l i g h t s ” ,
4 ” a t t r i b u t e s ” : [{
5 ” f u n c t i o n ” : ” owner−homeA” ,
6 ” scope ” : ” a n a l y s i s , c o n t r o l , a d m i n i s t r a t o r ”
7 ]}
8 }

Listing 4: Subscription request

In this case, the policy is satisfied, therefore the
subscription is accepted by the trust authority and, then,
NOS sends a positive response to Bob with the access
granted. Bob could also specify additional preferences
on the received data, for example in terms of data
quality (i.e., level of accuracy, precision, timeliness and
completeness), as shown in Listing 5. Note that, by
means of NOSs, users may declare that they will only
get the data with a given level of security and quality.
In the sample scenario, security levels strictly depend
on the encryption mechanisms adopted within the smart
home.

1 { ” d a t a p r o v i s i o n ” : [{
2 ” d a t a c o n t e n t ” : {
3 ” t imes t amp ” : ” 3 1 / 1 2 / 2 0 1 6 10 : 1 0 : 0 0 ” ,
4 ” d a t a ” : ” 0 .00465 ” ,
5 ” d a t a t y p e ” : ”kW” ,
6 ” owner ” : ” s e n s o r BL−homeA” ,
7 ” q u a l i t y L e v e l s ” : ” 0 . 8 , 0 . 8 , 1 , 1 ”
8 ” s t i c k y p o l i c y ” : [{
9 ” s c o p e s ” : [{

10 ” scope1 ” : ” a n a l y s i s ” ,
11 ” scope2 ” : ” c o n t r o l ” ,
12 } ] ,
13 ” v a l i d i t y ” : ” 3 h o u r s ” ,
14 ” c o n s t r a i n t s ” : [{
15 ” c o n s t r a i n t s 1 ” : ” a c c e s s a l l o w e d f o r

a n a l y s i s , c o n t r o l s c o p e s − owner ” ,
16 ” c o n s t r a i n t s 2 ” : ” a c c e s s a l l o w e d a n a l y s i s ,

c o n t r o l s c o p e s − d w e l l e r ”
17 } ] ,
18 }
19 ]}
20 }

Listing 5: Data provision

Once Bob receives the data of interest, it can send
messages to the broker under a given topic, e.g., “bed-
room lights-command”, for remotely controlling some
home appliances. For example, if all the occupants are
out of home and he recognizes that bedroom lights are



12

on, he can turn off them from his office. In this case, the
scope “control” is required by the sticky policy, therefore
such a request, to be accepted by NOS, must be sent by
a user with attribute “owner” or “dweller”, and not, for
example, “guest”. Similarly, Bob’s son is prevented from
creating and giving access permissions to other people,
because he does not own the scope “administrator”. The
format of the request is similar to that of subscription in
Listing 4 and it is always mediated by the trust authority,
but must come from Bob.

Finally, we consider the presence of an intruder who
eavesdrops the information that pass from the smart
home to the owner Bob and his son. The system is robust
because the intruder, in order to access the information,
should know the credentials owned by the users/devices
for ciphering the data along with the attached sticky
policy. Such credentials are established a priori among
users and the smart home system, therefore they cannot
be derived from communications. Moreover, besides de-
crypting the information, the intruder should also be able
to correctly satisfy the sticky policy. For such reasons,
we can conclude that sticky policies add a further level
of security to the transmitted data and, thus, increase the
robustness of the whole IoT system.

VI. CONCLUSION

In this paper, we have presented an enforcement
framework based on sticky policies, which has been
integrated in the NOS distributed and cross-domain IoT
middleware. With respect to the traditional approaches,
the use of sticky policies provide users and data sources
with an additional level of control over the disclosure of
their information. As demonstrated in the paper, the use
of sticky policies provides additional advantages in terms
of computational and storage requirements, obtained by
moving the management of policies to the trust authority.
The feasibility and the performance of the proposed
approach have been validated by means of a prototypical
implementation and a set of tests performed using real-
world data.

In the next future, we plan to focus on the deployment
of this middleware and enforcement framework in a
large-scale environment, in order to test its robustness
and scalability in more realistic conditions and interest-
ing scenarios. Furthermore, some open issues emerged,
such as: the definition of a proper language for sticky
policy representation; the design and development of
a general-purpose interpreter for sticky policies within
the IoT platform; the role of the trust authority into
the access control model; the formalization of a threat
model and the evaluation of the resilience of the system
to various kinds of attack.

REFERENCES

[1] S. Pearson and M. C. Mont, “Sticky policies: An approach for
managing privacy across multiple parties,” Computer, vol. 44,
no. 9, pp. 60–68, 2011.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proceedings of the first
edition of the MCC workshop on Mobile cloud computing. ACM,
2012, pp. 13–16.

[3] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proceedings of the 2015 Workshop
on Mobile Big Data. ACM, 2015, pp. 37–42.

[4] S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini, “Sticky
policy application for the future internet: A survey,” Technical
Report, 2017.

[5] “http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotection
ofprivacyandtransborderflowsofpersonaldata.htm,” OECD
Guidelines on the Protection of Privacy and Transborder Flows
of Personal Data, 2016.

[6] “http://www.eugdpr.org/,” European GDPR, 2017.
[7] M. C. Mont, S. Pearson, and P. Bramhall, “Towards account-

able management of identity and privacy: Sticky policies and
enforceable tracing services,” in Database and Expert Systems
Applications, 2003. Proceedings. 14th International Workshop
on. IEEE, 2003, pp. 377–382.

[8] S. Trabelsi and J. Sendor, “Sticky policies for data control in the
cloud,” in Privacy, Security and Trust (PST), 2012 Tenth Annual
International Conference on, July 2012, pp. 75–80.

[9] C. Leng, H. Yu, J. Wang, and J. Huang, “Securing personal health
records in the cloud by enforcing sticky policies,” Indonesian
Journal of Electrical Engineering and Computer Science, vol. 11,
no. 4, pp. 2200–2208, 2013.

[10] S. Li, T. Zhang, J. Gao, and Y. Park, “A sticky policy framework
for big data security,” in Big Data Computing Service and
Applications (BigDataService), 2015 IEEE First International
Conference on. IEEE, 2015, pp. 130–137.

[11] S. Pearson and A. Charlesworth, “Accountability as a way for-
ward for privacy protection in the cloud,” in IEEE International
Conference on Cloud Computing. Springer, 2009, pp. 131–144.

[12] F. Di Cerbo, S. Trabelsi, T. Steingruber, G. Dodero, and M. Bezzi,
“Sticky policies for mobile devices,” in Proceedings of the 18th
ACM Symposium on Access Control Models and Technologies,
ser. SACMAT ’13. New York, NY, USA: ACM, 2013, pp. 257–
260.

[13] H. Koshutanski, M. Ion, and L. Telesca, “Distributed identity
management model for digital ecosystems,” in The International
Conference on Emerging Security Information, Systems, and
Technologies (SECUREWARE 2007). IEEE, 2007, pp. 132–138.

[14] Q. Tang, “On using encryption techniques to enhance sticky
policies enforcement,” 2008.

[15] M. C. Mont, S. Pearson, and P. Bramhall, Towards Accountable
Management of Privacy and Identity Information. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 146–161.

[16] P. Ashley, C. Powers, and M. Schunter, “From privacy promises
to privacy management: a new approach for enforcing privacy
throughout an enterprise,” in Proceedings of the 2002 workshop
on New security paradigms. ACM, 2002, pp. 43–50.

[17] C. S. Powers, P. Ashley, and M. Schunter, “Privacy promises, ac-
cess control, and privacy management. enforcing privacy through-
out an enterprise by extending access control,” in Electronic
Commerce, 2002. Proceedings. Third International Symposium
on, 2002, pp. 13–21.

[18] G. Karjoth, M. Schunter, and M. Waidner, “Privacy-enabled
services for enterprises,” in Database and Expert Systems Ap-
plications, 2002. Proceedings. 13th International Workshop on.
IEEE, 2002, pp. 483–487.

[19] L. Bussard, G. Neven, and F.-S. Preiss, “Downstream usage con-
trol,” in Policies for Distributed Systems and Networks (POLICY),
2010 IEEE International Symposium on. IEEE, 2010, pp. 22–29.

[20] D. Butin, M. Chicote, and D. Le Métayer, “Log design for
accountability,” in Security and Privacy Workshops (SPW), 2013
IEEE. IEEE, 2013, pp. 1–7.



13

[21] M. Backes, G. Karjoth, W. Bagga, and M. Schunter, “Efficient
comparison of enterprise privacy policies,” in Proceedings of the
2004 ACM symposium on Applied computing. ACM, 2004, pp.
375–382.

[22] A. I. Antón, E. Bertino, N. Li, and T. Yu, “A roadmap for com-
prehensive online privacy policy management,” Communications
of the ACM, vol. 50, no. 7, pp. 109–116, 2007.

[23] S. Yamada and E. Kamioka, “Access control for security and pri-
vacy in ubiquitous computing environments,” IEICE transactions
on communications, vol. 88, no. 3, pp. 846–856, 2005.

[24] X. Jiang and J. A. Landay, “Modeling privacy control in context-
aware systems,” IEEE Pervasive computing, vol. 1, no. 3, pp.
59–63, 2002.

[25] A. El-Aziz and A. Kannan, “Access control for healthcare data
using extended xacml-srbac model,” in Proc. of International
Conference on Computer Communication and Informatics, Jan
2012, pp. 1–4.

[26] Z. Wu and L. Wang, “An innovative simulation environment for
cross-domain policy enforcement,” Simulation Modelling Prac-
tice and Theory, vol. 19, no. 7, pp. 1558–1583, August 2011.

[27] M. Dell’Amico, G. Serme, M. S. Idrees, A. S. De Oliveira, and
Y. Roudier, “HiPoLDS: A Hierarchical Security Policy Language
for Distributed Systems,” Information Security Technical Report,
vol. 17, no. 3, pp. 81–92, February 2013.

[28] D. Ferraiolo, V. Atluria, and S. Gavrila, “The Policy Machine:
A novel architecture and framework for access control policy
specification and enforcement,” Journal of Systems Architecture,
vol. 57, no. 4, pp. 412–424, April 2011.

[29] J. Rao, A. Sardinha, and N. Sadeh, “A meta-control architecture
for orchestrating policy enforcement across heterogeneous infor-
mation sources,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 7, no. 1, pp. 40 – 56, 2009.

[30] ——, “A meta-control architecture for orchestrating policy en-
forcement across heterogeneous information sources,” Web Se-
mantics: Science, Services and Agents on the World Wide Web,
vol. 7, no. 1, pp. 40–56, January 2009.

[31] A. Rizzardi, D. Miorandi, S. Sicari, C. Cappiello, and A. Coen-
Porisini, “Networked smart objects: Moving data processing
closer to the source,” in 2nd EAI International Conference on
IoT as a Service, Oct 2015.

[32] S. Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, and A. Coen-
Porisini, “A secure and quality-aware prototypical architecture for
the internet of things,” Information Systems, vol. 58, pp. 43–55,
2016.

[33] A. Rizzardi, S. Sicari, D. Miorandi, and A. Coen-Porisini,
“AUPS: An Open Source AUthenticated Publish/Subscribe sys-
tem for the Internet of Things,” Information Systems, vol. 62, pp.
29 – 41, 2016.

[34] S. Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, and A. Coen-
Porisini, “Security policy enforcement for networked smart ob-
jects,” Computer Networks, vol. 108, pp. 133 – 147, 2016.

[35] “IBM and Eurotech, MQTT v3.1 protocol specification,”
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/
mqtt-v3r1.html.

[36] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,”
in Proceedings of the 13th ACM Conference on Computer and
Communications Security, 2006, pp. 89–98.

[37] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and
J. Albrecht, “Smart*: An open data set and tools for enabling
research in sustainable homes,” SustKDD, August, vol. 111, p.
112, 2012.


