
Examples

Given a data set, the following rocc function generates the coordinates of the points of a ROC curve. The

rocc function parameters are the dataset, the column containing the estimates and the column containing

the actuals.

rocc <- function(dataframe, ind1, ind2) {
 dataframe <- dataframe[order(dataframe[ind1], decreasing = TRUE),]
 predictions <- dataframe[[ind1]]
 labels <- dataframe[[ind2]]
 x<- c(0)
 y<-c(0)
 for(i in 1:length(predictions)){
 TP <- 0
 TN <- 0
 FP <- 0
 FN <- 0
 if(i!=1){
 if(predictions[i] == predictions[i-1]){
 next
 }
 }
 for(j in 1:length(predictions)){
 if(predictions[j] < predictions[i]){
 if(labels[j] == 0){
 TN <- (TN+1)
 }else{
 FN <- (FN+1)
 }
 }else{
 if(labels[j] == 0){
 FP <- (FP+1)
 }else{
 TP <- (TP+1)
 }
 }
 }
 TPR <- TP/(TP+FN)
 FPR <- 1 - TN/(TN+FP)
 x <- c(x,FPR)
 y <- c(y,TPR)
 }
 x<-c(x,1)
 y<-c(y,1)
 roc <- list(x,y)
 names(roc) <- c("x", "y")
 invisible(roc)
}

The following code

data1=read.csv("data_for_ROC1.csv")
n=nrow((data1))
AP=sum(data1$labels)
AN=n-AP
firstROCcurve <- rocc(data1, 1, 2)
rra_result1 <- rra(firstROCcurve$x, firstROCcurve$y, AP, AN, plot = FALSE)
rra.plot(rra_result1, cROI = "white", cUnder = "white", main="")

reads data from file "data_for_ROC1.csv" (which contains 1000 data points, of which 565 positives and 435

negatives), computes the ROC curve and plots it, as shown below

The following code

data2=read.csv("data_for_ROC2.csv")
n=nrow((data2))
AP=sum(data2$labels)
AN=n-AP
secondROCcurve <- rocc(data2, 1, 2)
rra_result2 <- rra(secondROCcurve$x, secondROCcurve$y, AP, AN, plot = FALSE)
rra.plot(rra_result2, cROI = "white", cUnder = "white", main="")

Reads data from file "data_for_ROC2.csv" (which contains 637 data points, of which 370 positives and 267
negatives), computes the ROC curve and plots it, as shown below

The following code

dataBerek=read.csv("berek.csv")
dataBerek$bug=ifelse(dataBerek$bug>0,1,0)
n=nrow((dataBerek))
AP=sum(dataBerek$bug)
AN=n-AP
berekWMCROCcurve <- rocc(dataBerek, 4, 24)
rocWMC <- rra(berekWMCROCcurve$x, berekWMCROCcurve$y, AP, AN, plot = FALSE)
rra.plot(rocWMC, cROI = "white", cUnder = "white", main="")

Reads data from file "berek.csv", which contains data for the berek project (from the PROMISE repository).
The dataset contains 43 data points concerning classes: of these 16 are buggy (positive) and 27 are bug-free
(negative). The code computes the ROC curve (using as predictor the WMC measure in column 4) and plots
it, as shown below.

Note that the rra function also outputs the value of the AUC of the ROC curve.

Similar code can be used to obtain the ROC curves when LOC and CA measures are used as predictors.

To compute RRA(TPR, FPR) the following code can be used

n=nrow((data1))
AP=sum(data1$labels)
AN=n-AP
temp=rra(firstROCcurve$x, firstROCcurve$y, AP, AN, recall=TRUE, fallout=TRUE)

This code prints the RRA:
The Ratio of Relevant Areas (RRA) is equal to 0.548289

and shows the RoI:

Having saved the result of the rra function in the temp variable, the RRA value is available also as
temp$rra.

To compute RRA(=0.5) the following code can be used

rra(firstROCcurve$x, firstROCcurve$y, AP, AN, phi=TRUE, c_phi=0.5)

This code prints the RRA:
The Ratio of Relevant Areas (RRA) is equal to 0.1990632
and shows the RoI:

The following code computes RRA when the RoI is constrained by both f>0.4 markedness>0.4 and Youden's
J>0.3. In addition, the area under the curve belonging to the RoI is colored in green.

n=nrow((data2))
AP=sum(data2$labels)
AN=n-AP
rra(secondROCcurve$x, secondROCcurve$y, AP, AN, j=TRUE, c_j=0.3,
 markedness=TRUE, c_markedness=0.4, cUnder="green", main = "J and phi constrain")

The code computes RRA (The Ratio of Relevant Areas (RRA) is equal to 0.1801198) and shows
the RoI:

The following code computes RRA when the RoI is constrained by specificity and normalized cost. Namely,
specificity is better than the average specificity of a uniform random policy ("uni") with p(m) = 0.5, and the
normalized cost is less than 0.8 NCrnd(lambda=0.7), where NCrnd(lambda=0.8) is the averge normalized cost of
random estimation, when lambda=0.7.
rra(secondROCcurve$x, secondROCcurve$y, AP, AN, ncost=TRUE, lambda=0.7, mu=0.8,
 specificity=TRUE, c_specificity="uni", p_specificity=0.5, col="red",
 lwd=2, main="cost & specificity constrain")

As usual, the code computes RRA (The Ratio of Relevant Areas (RRA) is equal to
0.2669933) and shows the RoI:

The area under the curve belonging to the RoI may be formed by disjoint pieces, as in the following example.

n=nrow((dataBerek))
AP=sum(dataBerek$bug)
AN=n-AP
rra(berekWMCROCcurve$x, berekWMCROCcurve$y, AP, AN, j = TRUE, c_j = 0.63)

The following examples illustrate the usage of rra.test, a function that can be used to compare two ROC
curves.

Suppose we want to compare the diagnostic tests based on WMC and AC for the berek dataset.

The following code performs the comparison, using as the RoI the region where precision is better than
average random classification with p=AP/n and fallout is better than the average fallout of a uniform
random policy ("uni") with p(m) = 0.5.

rra.test(berekWMCROCcurve$x, berekWMCROCcurve$y, berekACROCcurve$x, berekACROCcurve$y,
 AP, AN, precision=TRUE, fallout=TRUE, c_fallout="uni", p_fallout=0.5)

The code computes that:
The second ROC curve (red) has a better RRA value than the first one (black)

In the plot, the first curve (berekWMCROCcurve)is shown as a dashed black line, while the second curve

(berekACROCcurve) is showd as a red solid line.

Rra.test does not provide details. If you want to know the RRA value for the two curve you can use the
following code:

resWMC=rra(berekWMCROCcurve$x, berekWMCROCcurve$y, plot=FALSE,
 AP, AN, precision=TRUE, fallout=TRUE, c_fallout="uni", p_fallout=0.5)
resAC=rra(berekACROCcurve$x, berekACROCcurve$y, plot=FALSE,
 AP, AN, precision=TRUE, fallout=TRUE, c_fallout="uni", p_fallout=0.5)
cat("RRA for WMC is ", resWMC$rra, ", RRA for AC is ", resAC$rra,
 "\n", sep="")

which shows that
RRA for WMC is 0.7716049, RRA for AC is 0.808642

You can also feed rra.test with the results provided by rra. For instance this code:
rra.test(resWMC, resAC)

provides the same picture shown above.

 It is possible to compare more than two ROC curves, by supplying a list to rra.test, as in the following
example:

resLOC=rra(berekLOCROCcurve$x, berekLOCROCcurve$y, plot=FALSE,
 AP, AN, precision=TRUE, fallout=TRUE, c_fallout="uni", p_fallout=0.5)

rra.test(list(resWMC, resAC, resLOC),legend = TRUE, cUnderBest="white",
 main = "Test multiple RRAs", colOther="midnight blue")

